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Abstract

Common signal processing tasks in the numerical handling of experimental data include interpolation, smoothing, and propa-
gation of uncertainty. A comparison of experimental results to a theoretical model further requires curve fitting, the plotting of
functions and data, and a determination of the goodness of fit. These tasks often typically require an interactive, exploratory
approach to the data, yet for the results to be reliable, the original data needs to be freely available and resulting analysis readily
reproducible. In this article, we provide examples of how to use the Numerical Python (Numpy) and Scientific Python (SciPy)
packages and interactive Jupyter Notebooks to accomplish these goals for data stored in a common plain text spreadsheet
format. Sample Jupyter notebooks containing the Python code used to carry out these tasks are included and can be used as

templates for the analysis of new data.

Navigation Tip: For a handy table of contents, select Table of Contents from the Document V pull
down menu (upper left of this page). Clicking on an item in the table of contents will take you to that
section.

1 Introduction

1.1 About this guide

This is a short guide to using Python to accomplish some commonly needed tasks when working with
data acquired in an experimental physics lab, including data import/export, plotting with error bars, curve
fitting of functions to data, testing the goodness of fit of these functions to the data (taking into account the
uncertainty in the measurements), the interpolation, smoothing, and differentiation of data , the propagation
of “error” in calculated quantities, and numerical calculations of data including units and/or uncertainty.
A careful discussion of how to import needed functions from the Numerical Python (numpy) and Scientific
Python (SciPy) libraries — what Python calls ‘packages’ — is also included. The examples presented here rely
heavily on functions from these packages to simplify various analysis tasks in the examples below. The focus
here is on using Python as a scientific and graphing calculator for experimental data, but more experienced
Python users should still find the functions and methods presented here useful in their own programs.

The goal of this guide is for you to be carry out each of the analysis steps illustrated here using your own
data, and to be able to do so by making at most only a few small changes (such as the names of data files
and columns of data) to the templates included with each example. Beginners will need to know a few basic



Python rules and syntax — for example, that 22 is written x**2 and NOT as x~2— but will not need to
already be experienced programmers. For Recommendations on how to get started with Python, see below.

1.2 How to get started

1.2.1 Python

If Python is new to you, we recommend the getting started with Python tutorials developed by our friends
and rivals in the Wellesley College Physics Department. Go Smith College Pioneers! These highly focused,
highly practical tutorials are in the form of interactive Jupyter notebooks (see below) that allow you to try
Python out as you learn; we use them in our own courses and they form the foundation for the methods
presented here. We also recommend the unusually lucidly written (and most generously, freely provided)
introductory chapter Python programming for physicists from Mark Newman’s Numerical Python-based
textbook Computational Physics (Newman, 2013). Newman’s text provides “an introduction to the Python
language at a level suitable for readers with no previous programming experience” with an emphasis on the
application of computational methods to typical theoretical problems in undergraduate physics.

1.2.2 Jupyter Notebooks

The examples provided in this guide run Python within user friendly but somewhat oddly named
Jupyter notebooks mentioned above. In some ways they look and act like Mathematica@®) notebooks, in-
cluding the use of ‘cells’ (paragraphs of text, equations, or code) and the use of the shift+enter keys to
execute the code in a cell. Jupyter notebooks are a spin-off of what is known as interactive Python (iPython)
and in older examples on the web, you will still encounter references to iPython Notebook instead of Jupyter.
This is also why Jupyter is spelled with a ‘py’ and why Jupyter notebook filenames still end with .ipynb.

If the Jupyter notebook (formerly iPython notebook) interface is new to you, take time now to try the on-
line interactive tutorial on how to run Python inside Jupyter notebooks. Go ahead, we’ll wait. The most
important web pages in that tutorial are the first two: Notebook Basics andiPython: beyond plain Python.
Once you are ready to learn how to add your own text and equations to Jupyter notebooks, see the third
page (on Markdown Cells).

Note that Jupyter notebooks are not the only way to write and run Python code. A bare-bones command
line editor called IDLE is used by many beginning computer science students (and in the text Computational
Physics) and a MATLABG®) style interface called Spyder (again with the ‘py’!) is used by many advanced
Python programmers. The Python programs provided here will run in any of these environments. But this
also means you can run Python programs encountered elsewhere within Jupyter notebooks!

Within the Physics Department here at Smith College, we use the Jupyter notebook interface for two
primary reasons: (1) running Python within the notebook provides a reproducible, self-documenting method
of analyzing collected data, and (2) the ability to add explanatory notes, tables, figures, and equations within
Jupyter notebooks means we can also use them as electronic lab notebooks for courses.

1.2.3 Try it out!

On a webserver
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http://www-personal.umich.edu/~mejn/cp/index.html
https://pythonhosted.org/spyder/

Jupyter notebooks are viewed and run using a web browser such as Firefox (just like this article in Authorea).
That means they can also be run on a webserver that you access from a web browser and, as a result, it
isn’t necessary to have Python installed on your own computer (provided you have internet access and all
the Python packages you wish to use are already installed on the webserver).

To try out the Python programs presented here using a Jupyter webserver hosted by Authorea, click
the </> Code button found to the left of many of the figures in this guide. This will reveal the .ipynb
Jupyter notebook (and associated data files) containing the Python code used to generate that figure. Clicking
on the notebook file name will launch the notebook in a new tab or window within your web browser . Clicking
within a ‘cell’ (a block of text, equations, and or code, outlined by a rectangular border) and hitting SHIFT-
ENTER will run any code in that cell and advance to the next one. Alternatively, you can make edits to the
code in notebook (for example, adjust a smoothing parameter or change the name of a file) then select Run
A1l from the Cell menu or Restart & Run All from the Kernel menu to rerun the program. For additional
help, see the online interactive tutorial on how to run Python inside Jupyter notebooks.

Many institutions host and configure their own Jupyter webservers suitable for Python programming. For
example, Smith College physics students can upload and run any of the Jupyter notebooks included in this
guide on the webserver https://jove.smith.edu, as this particular webserver has all the packages used
here preinstalled. (Note to Smith students: contact the course instructor for an account).

On your own computer

The Authorea server will work for all of the examples except the (aptly named) Python packages Pint
and Uncertainties used for numerical calculations using units and/or uncertainties, as those packages are not
currently installed on that server (but maybe someday?). That said, you will want to write, run, and store
your own data and programs on your own system. If you don’t have access to a local Jupyter webserver
with the packages you need, you will want to install and run Python and Jupyter on your own computer.
The good news is that everything needed is available for free (except the computer)! See Section 9: Installing
Python for instructions on how to do this.

2 Importing and exporting data

There are many ways to import, export, and represent data in files. Here we provide just enough to get you
started but it might very well be all you need. In these examples, we assume you have first entered the data
into a spreadsheet program, then exported that data in ‘CSV’ (comma separated variable) file format. We
use the CSV file format here because it is ubiquitous: all spreadsheets have the ability to export and import
data in the CSV file format. Data in other common plain text file formats (such as tab delimited) can also
be imported by making a few small modifications to the examples provided below.

2.1 CSV spreadsheet file format

Let’s look at a particular CSV data file titled Calibration_650nm.csv . The file consists of a single header
row of text which we need to skip over when loading the numerical data, followed by three columns of data,
one for each measured variable.
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Here’s what the data looks like in spreadsheet form (grid lines not shown):

angle V_pd V_pd_error
0.0e+00  3.24e+01 2.49e-02
1.5e+01  3.0le+01 1.54e-01
3.0e+01  2.4e+01 2.53e-01
4.5e4+01  1.59e+01 2.85e-01
6.0e+01  7.78e+00 2.41e-01
7.5e+01  1.96e+00 1.33e-01
9.0e+01  3.57e-02 1.64e-02
1.05e4+02  2.58e+-00 1.53e-01
1.2e+02  8.95e+00 2.52e-01
1.35e+02 1.74e+401 2.85e-01
1.5e+02  2.56e+01 2.41e-01
1.65e4+02 3.13e+01 1.34e-01
1.8e+02  3.3e+01 2.49e-02
1.95e+02  3.03e+01 1.54e-01
2.1e+02  2.39e+01 2.53e-01
2.25e+02  1.56e+01 2.85e-01
2.4e+02  7.55e+00 2.41e-01
2.55e+02  1.88e+00 1.33e-01
2.7e+02  3.38e-02 1.64e-02
2.85e+02  2.46e+00 1.53e-01
3.0e+02  8.51e+00 2.52e-01
3.15e+02  1.66e+01 2.85e-01
3.3e+02  2.47e+01 2.41e-01
3.45e+02  3.05e+01 1.34e-01
3.6e+02  3.25e+401 2.49e-02

Table 1: This is a caption

Here’s what the first few lines of the same CSV spreadsheet file looks like when opened in a text editor
(notice the commas separating the values within each row):

angle, V_pd, V_pd_error

0.000000000000000000e+-00,3.236249999999999716e+01,2.492398249033692462e-02
1.500000000000000000e+01,3.008079999999999998e+-01,1.536232648449061544¢-01
3.000000000000000000e+-01,2.402850000000000108e+-01,2.527732747539992997¢e-01

2.2 loading data from a CSV file

We are now going to use the Numerical Python (numpy) command loadtxt to load data from this CSV
text file. Each column of data will become a Numerical Python (numpy) array.

The process consists of two steps:



1. importing the loadtxt command from Numerical Python
2. using the loadtxt command to transfer the data from the file

2.2.1 importing commands

loadtxt is not part of the core Python language but is instead part of the Numerical Python package
(numpy). We must therefore “import” it into our program before using. There are two common methods of
doing this.

In the first method, each individual function or module (such as loadtxt from numpy) is imported as needed
. We call this the direct numpy import style.

“ # example: direct import method

from numpy import loadtxt #import just the numpy command loadtxt #from numpy import * #an alter-
native method that imports all numpy commands. Be careful!

This method is used, for example, in the excellent Python-based textbook Computational Physics by Mark
Newman (Newman, 2013).

Here is another example:

#example: direct import method
from numpy import sin, cos, array, pi # import a few needed functions from the numpy package

angle_in_degrees = array([0, 30, 60, 90]) # create an array with elements corresponding to 0, 30, 60, a
g g y y p g

angle_in_radians = angle_in_degrees * pi / 180 # convert to radians

x = cos(angle_in_radians) # calculate cosine for each element in array, assign values t
y = sin(angle_in_radians) # calculate sine for each element in array, assign values to
print(y)

with result

[0. 0.5 0.8660254 1.]

In the second method, we first import all of the numpy package ( and, optionally, provide an abbreviation
for numpy such as np.) We then add numpy. (or the abbreviation np.) as a prefix when using a function
from the numpy package. We call this the traditional import style.

# example: traditional import method

import numpy as np # if you include ’as np’, ’numpy’ is replaced with the abbreviation ’np’

We call this the traditional method because this is what you will find in the examples included in the official
numpy user guide and quickstart tutorials.


http://www-personal.umich.edu/~mejn/cp/index.html
https://docs.scipy.org/doc/numpy/
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The key to using the traditional method is to be sure to specify that you are using a function or module from
the numpy package by preceding it either with numpy or the abbreviation of your choice (such as np). This
is why the loadtxt commands used in the examples below are written np.loadtxt instead of loadtxt.

Here is another example:

#example: traditional import method
import numpy as np # you only need to type this once in each program

angle_in_degrees = np. array([0, 30, 60, 90]) # create an array with elements corresponding to 0, 30, 6

angle_in_radians = angle_in_degrees * np.pi / 180 # convert to radians

x = np.cos(angle_in_radians) # calculate cosine for each element in array, assign valu
y = np.sin(angle_in_radians) # calculate sine for each element in array, assign values °
print(y)

with the same result as before:

[0. 0.5 0.8660254 1.]

One one hand, the direct import method has the advantage of being lean, clean, and easy to read. Computer
scientists love it. On the other hand, it does not work well if we need to use multiple packages containing
identically named functions. For example, the math package math, the complex mathematics package cmath,
the numerical python package numpy, and the numerical calculation of uncertainties package uncertainties
all have trigonometric functions called sin and cos. To keep clear which function we are using from which
package, and when, we will usually use the traditional import style for packages.

2.2.2 importing the data file

We now show how to use loadtxtto import the csv format spreadsheet file Calibration 650nm.csv. Unless
specified otherwise, the data file is assumed to be in the same file folder as the Python program.

The loadtzt command:

# example: traditional import method

import numpy as np # only need this once per program

file_name = ’Calibration_650nm.csv’ # replace with the name of your csv data file
file_folder = ’° # use this if your data file is in the same folder as
use this if data file is in a folder called ’data’
inside the folder ’nfortune’ within the ’Users’ dir

such as when using the Jupyter webserver jove.smith
this is called ’absolute addressing’

#file_folder = ’/Users/nfortune/data’

H H

#file_folder = ’data_subfolder/’ # you can use this if data file is in a _subfolder_ c



# this is called ’relative addressing’
data_file = file_folder + file_name

angle, V_pd, V_pd_error = np.loadtxt(data_file, delimiter = ’,’, skiprows = 1, usecols = (0, 1, 2), un

What these commands do:

data file = file folder + file name tells Python what the name of the file is and where to find it! Tip:
If you have trouble determining how to specify the file_folder location for your data, an easy workaround is to
first put the data in the same folder as your Python program, then either (a) set file_folder = '' asin the
example above or (b) replace np.loadtxt(file_folder + file name, ...) with np.loadtxt(file name,

Do

delimiter = ',' tells loadtxt that your data is in comma separated variable format (CSV). The character
used to separate one column of data from another is called the ‘delimiter.” See the numpy.loadtxt manual
page for details.

skiprows = 1 tells loadtxt to skip over one row of text in the CSV file before looking for data to load into
arrays. This is because the first row of text contains names for each column of data instead of data values
(as shown in Table 1).

unpack = True tells loadtxt that the data is in a ‘packed’ data format (in which each variable corresponds
to a different column instead of to a different row )and therefore needs to be ‘unpacked’ when loaded. This
is the typical arrangement for data in spreadsheets. Use unpack = False if the data is in an ‘unpacked’
data format (in which each variable corresponds to a different row instead of a different column ).

usecols = (0, 1, 2) says the data you are looking for is in the first 3 columns, which are numbered 0, 1,
and 2 (because Python always starts from zero when counting). In our case, since there are only 3 columns
of data and we want to use all three, this command is unnecessary. You could leave it out and everything
would work just fine for this particular data file. If, however, you wanted to load data from a file with
many columns but only needed data from column number 0, column number 3, and column number 4, you
would need to include usecols = (0,3,4) within the loadtxt command.

angle, V.pd, V.pd error = np.loadtxt(...) tells Numerical Python to create an array called angle
and fill it with values from the first column of data in the CSV spreadsheet file, then create an array
called V_pd and fill it with values from the second column of data, and finally create an array called V_pd_—
error and fill it with values from the third column of data. The result is three shiny new numpy data arrays
we can use in our calculations.

What if your data is in a different text file format (such as tab delimited)? In that case you can still use
loadtxt to import your data as long as you modify the delimitercommand to match the file format. See
the numpy.loadtxt manual page for details.

2.3 saving data to a CSV file


https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html?highlight=loadtxt
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For completeness, we now provide an example of how to use the savetxt command from numpy to save data
in csv format. There are many ways to save files in spreadsheet format but this is the simplest method we’ve

found so far using numpy.

Direct numpy import style:

from numpy import savetxt, array

output_filename = ’output.csv’

header_row_text = ’angle, V_pd, V_pd_error’
)

comment_text = ’
#comment_text = *#’

data = array([angle, V_pd, V_pd_error]).T
savetxt (output_filename, data, delimiter =
Traditional numpy import style:

import numpy as np

output_filename = ’output.csv’

header_row_text = ’angle, V_pd, V_pd_error’
comment_text = 7’

#assumes you haven’t already imported these commands

#provide a name for the new file

#make first row of file be a list of column names. Opt
#do not start header row with a ’#’. Optional.

#start the header row with a ’#’ . Default setting.

#create a 2D matrix and transpose rows and columns (cl

> 7 header = header_row_text, comments = comment_text)

#don’t import numpy again if already done once before

#provide a name for the new file
#make first row of file be a list of column names. Opt
#do not start header row with a ’#’. Optional.

#comment_text = ’#’ #start the header row with a ’#’ . Default setting.
data = np.array([angle, V_pd, V_pd_error]).T #create a 2D matrix and transpose rows and columns (cli
np.savetxt (output_filename, data, delimiter = ’,’, header = header_row_text, comments = comment_text)

Why do we need the line data = array([angle, V_pd]).T ? We need it because ordinarily savetxt
would save the data in what Python calls ‘unpacked’ format, a format in which each variable corresponds
to a different row instead of to a different column. This is often convenient but is not what we wanted in
this particular case. We therefore did the following clever trick before saving the data to a file: we created
a 2D matrix of our data with the numpy command array([angle, V_pd]), then used the .T command to
transpose the matrix , thereby flipping the rows and columns.

2.4 Other file handling methods

For more advanced data handling of spreadsheet data files, large data sets, and/or the handling of binary data,
you may wish to try the commands provided by the very popular Python Data Analysis Library package
pandas or the big data Hierarchical Data Format (HDF5) using the Python interface package h5py (instead
of those provided by numpy).

3 Plotting data using error bars

The most commonly used plotting package in Python is Matplotlib. Here’s an example of how to use it
to generate plots with error bars representing the uncertainty in each data point. We use angle from the
file 650 nm calibration.csv for the x-axis values, we use V_pd for the y-axis values, and we use V_pd_delta
for the uncertainty in the y-axis values.


http://pandas.pydata.org/
http://www.h5py.org/
https://docs.scipy.org/doc/numpy/reference/routines.io.html
https://matplotlib.org/index.html

%matplotlib inline

import matplotlib as mpl
from matplotlib import pyplot as plt #this is the traditional method

mpl
mpl

plt
plt
plt

plt

plt.

.rc(’xtick’, labelsize = 18) #use 18 point font for numbering on x axis
.rc(’ytick’, labelsize = 18) #use 18 point font for numbering on y axis
.figure(figsize = (7,5)) #specify figure size as 7 x 5 inches

#for default size, type plt.figure()

.xlabel(r"$\theta$ [degrees]", fontsize = 18) #label axis (using LaTeX commands)
.ylabel(r"$V_{pd}$ [volts]", fontsize = 18)  #use 18 point font for label text

.errorbar(angle, V_pd,

xerr=None, yerr=V_pd_error,
linestyle = ’none’,

color = ’blue’,

capsize = 3, capthick = 1)

show ()

The result is shown in Fig.1 below.

What these commands do:

%matplotlib inline is an interactive Python (iPython) 'magic command’ used when running
Python within a Jupyter notebook. It allows the display of data plots within the notebook.

Tip: When running Jupyter notebooks within Authorea , the%matplotlib inline command
must precede the from matplotlib import pyplot command.

plt.figure() signifies the beginning of the plotting instructions specific to that figure.

plt.errorbar(angle, V_pd, xerr = None, yerr=V_pd_delta) isthe command that instructs
matplotlib to generate a x-y plot with error bars (as opposed to a bar graph or scatter plot, for
example). All four parameters (x, y, xerr, yerr) are required.

linestyle and color are used to customize the appearance of the data points. Linestyle =
None means there are no connecting lines between points. Color means the color of the error
bar lines and caps. The standard colors are blue, green, red, cyan, magenta, yellow, black, and
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white (with corresponding abbreviations ‘b’, ‘g’, ‘7, ‘¢’, ‘m’, ‘y’, ‘k’, and ‘w’).

capsize, and capthick are used to customize the appearance of the error bars.  capsize =3
sets the width of the error bars to ‘3’ (in typesetter points), and capthick=1sets the thickness
of the drawn bars to ‘1’ (again in typesetter points). Note that if the capsize and capthick
commands are omitted, matplotlib will draw lines indicating the given uncertainty but will omit
the bars!


http://ipython.readthedocs.io/en/stable/interactive/magics.html
https://www.authorea.com/users/18589/articles/307487-matplotlib-pyplot-test

plt.show() signifies the end of the plotting instructions and causes matplotlib to plot the data.

For additional examples and information about other commands and options (including grid lines, tick
marks, semilog plots, and log-log plots), please click on the links supplied here or search the online mat-
plotlib.pyplot documentation.
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Figure 1: Photodiode voltage as a function of relative polarizer angle for light at 650 nm passing through
two polarizers. V,q corresponds to the voltage measured across a resistor placed in series with a photodiode
and is linearly proportional to light intensity under these conditions. A change in polarization angle of the
light (due to the Faraday effect, for example) can be detected as a change in photodiode voltage but the size
of the change in voltage for a given change in polarization angle depends on the relative orientation of the
two polarizers.

4 Curve fitting

4.1 mathematical modeling

Curve fitting requires a mathematical model, initial estimates for the adjustable parameters in the model,
and estimates of the uncertainty in the values of each data point. Here, we construct a mathematical model
based on ”"Malus’s Law” to describe light passing through two linear polarizers, as measured by a powered
photodiode:

1(6) = Tocos® (6 — 00) + C = ST [1+ cos(2(6 — 60))] + C (1)
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where 6 is the (fixed) angle of the first (reference) linear polarizer, 6 is the (variable) angle of the second
linear polarizer, § — 6 is the relative angle between them, and I is the maximum intensity of the light
passing through both polarizers ( which occurs when 6 = 6y). The offset C represents any ‘dc’ offset in the
signal from the photo-detector (resulting in a nonzero signal in the absence of light), any additional light
reaching the photo-detector that didn’t pass through the polarizers, and if the polarizers are not perfect
(ideal), the fraction of light passing through but not polarized by both polarizers.

Rewriting in terms of the measured output photodiode voltage Vjq4 , the relative polarizer angle ¢ =6 — 6,
, and assuming a linear response between the photo-detector output voltage and light intensity, we have
1
Voi(6) = Vo cos®(9) + Vi = 5V [1 + cos(20)] + V4 (2)

If, in addition, the variables V4,V1, 6 and fpand ¢ are independent of each other (which will be the case for
ideal polarizers), then to first order, the uncertainty §V,q is given by (Hughes and Hase, 2010)

Ve e (Ved N s s (Ved\ s
(0Vpa) = \/< Ve ) (6V0)* + KX (00)* + v, (6V1) (3)
where ¢ = 1/(60)* + (6,)” and which we will approximate as 06 as we are holding 6 constant.

Evaluating the partial derivatives in Eq. 3,

(V) . i\’
Vpa = Vor/ (cos @)™ | — | + (—2cos¢sing)” (§¢)? + | — (4)
Vo Vo
The corresponding Python functions are
# import numpy as np
def polarization_model( phi_array, V_O, phi_0, V_1):
return V_0 * (1 + np.cos(2 * (phi_array - phi_0)))/2 + V_1
and
# import numpy as np
def photodiode_error(phi_array, delta_V_0O, delta_phi, delta_V_1, V_0O, phi_0):
V_O_error= (delta_V_0 / V_0) * (np.cos(phi_array - phi_0))**2
phi_error = (delta_phi) * (2 * np.cos(phi_array- phi_0) * np.sin(phi_array - phi_0))
V_1_error= (delta_V_1 / V_0)

fractional_error = np.sqrt(V_O_error **2 + phi_error **2 + V_1_error *x2)
return fractional_error * V_O

We can determine 6V; and §V) experimentally by measuring the statistical spread in the minimum and
maximum values of Vj,4 (when ¢ = 7 radians and ¢ = 0, respectively). The polarizer angle # is mechanically
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set, so the uncertainty §¢ depends on the accuracy of a nominally 15° step change in angle 6 with the
apparatus at hand.

Now we encounter an apparent conundrum: we want to use the curve fit to determine a best estimate for Vj
but solving for §V requires us to already have a numerical value for V. How do we determine the numerical
values for 0V,q (0) needed to find a best estimate of Vj if we don’t already know V5? This, however, is not
the impasse that it might seem. The curve fitting algorithm already requires that we supply an initial guess
for the parameters. In this situation, then, we can carry out the curve fitting algorithm a second or third
time instead of just once, each time using the best fit values output by the algorithm in the previous fit as
our new initial values for the new fit. Once the output values match the input values (within uncertainty),
we stop. When the output values match the input values, we say the results are self-consistent.

Here is the procedure for finding self-consistent ‘best fit’ values from curve-fitting:

1. Make a rough initial guess for the parameters Vy, V1, and 6y from a graph of the data.
2. Use the values of Vj, Vi, and 6y output by the curve-fitting routine as a new ‘initial guess’
3. Repeat the curve fit (using each output as a new input) until Vj stops changing.

Note: if you know how to do programming in Python, this would be a great place to simplify your life by
introducing a while loop into the code that repeats the curve fit until the results become self-consistent.
We plan to add a section illustrating how to do that in a future version of this guide.

4.2 fitting the model to data

4.2.1 calculating best fit values

We now turn to the actual Python code for non-linear curve fitting. Notice that this is a “weighted” fit,
in that the stated uncertainty of each data point is taken into account during the fit. Practically speaking,
this means the curve-fitting routine tries harder to match the model to the data at points with a smaller
uncertainty (although it may not succeed) because those points are given greater importance ("weight’). This
is as it should be, and is also needed to calculate a numerically accurate chi-square value for a determination
of the “goodness of fit.”

Here we assume that values have already been experimentally determined for uncertainties in V4, Vi, and 6.
We will therefore leave these unchanged throughout the curve-fitting process.

# measured uncertainties

delta_VO = 0.020 # mV, after averaging

delta_V1 0.014 # mV, after averaging
delta_theta = 0.5 * np.pi / 180 # 0.5 degrees, in radians

Now let’s take care of the initial setup:

# initial guess for polarization models
VO = 30.0 #initial guess, in mV
Vi = 0.02 #initial guess, in mV

theta = angle * np.pi / 180 # convert from degrees to radians

thetaO = -2.0 * np.pi / 180 #initial guess for offset angle of 2 degree, in radians
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initial_guess = np.array([VO, thetaO, V1])
initial_error = np.array([delta_VO, delta_theta, delta_V1i])
0ld_fit = np.copy(initial_guess) # save a copy to compare new with old

estimated_error = photodiode_error(theta, delta_VO, delta_theta, delta_Vi,
VO, thetaO) #propagate uncertainty using initial values

Finally let’s run the curve fit command:

# load curve_fit routine from scipy

from scipy.optimize import curve_fit # import method used here

# alternative method (as recommended in https://docs.scipy.org/doc/scipy/reference.api.html)
#from scipy import optimize
#fit, covariance = optimize.curve_fit(...)

#run curve_fit for polarization_model
fit, covariance = curve_fit(polarization_model, theta, V_pd,
pO = initial_guess,
sigma = estimated_error, absolute_sigma = True)

error = np.sqrt(np.diag(covariance))

print (old_fit)
print (fit)

0ld_fit = np.copy(fit)

print ()

print(°V_0 = 2{: . 3f}’ .format(fit[0]), ’%’, ’{:.3f}’ .format(error[0]), ’> mV’)

print(°V_1 = °,°{:.4f}’ .format (£fit[2]), ’+’, ’{:.3f}’.format(error[2]), ’> mV’)

print(*theta 0 = ’,°{:.4f}’ .format(fit[1]), ’#*’, ’{:.4f}’ .format(error[1]), ’radian’)

print (° =, 2{:.4f}’ .format(£it[1]*180/np.pi), ’+’, ’{:.4f}’ .format(error[1]*180/np.pi), ’degrees

Here are the results after the first iteration:

V_0 = 32.631 + 0.024 mV

v_1 = 0.023 £ 0.016 mV

theta_0 = -0.0203 £ 0.0018 radian
= -1.162 =

0.102 degrees

We now use the output values for V; and V] as the new input values and recalculate the estimated error for
each V,q (6) value:

new_initial_values = np.array([fit[0], fit[1], fit[2]11)

estimated_error = photodiode_error(theta, delta_VO, delta_theta, delta_Vi,
fit[0], fit[1]) # propagate error using new values for VO, etc

fit, covariance = curve_fit(polarization_model, theta, V_pd,
pO = new_initial_values,

sigma = estimated_error, absolute_sigma = True)

error = np.sqrt(np.diag(covariance))
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print (old_fit)
print(fit)

0ld_fit = np.copy(fit)

V_pd_model = polarization_model(theta, fit[0], fit[1], fit[2])
residual = V_pd - V_pd_model

data_uncertainty = photodiode_error(theta, delta_VO, delta_theta, delta_V1, fit[0], fit[1])

chisq = sum((residual/ data_uncertainty)**2) #typo corrected

degrees_of _freedom = len(residual) - len(initial_guess)

reduced_chisq = chisq / degrees_of_freedom # this should be close to one

CDF = chi2.cdf(chisq, degrees_of_freedom) # this should be close to 50 percent

print (°’chi-square = ’,chisq)
print (’degrees of freedom = ’,degrees_of_freedom)
print (’reduced chi-square = ’,reduced_chisq)

print (’fractional probability of chisq \selectlanguage{english}[?]’, chisq, ’for ’, degrees_of_freedom,

and continue in this way until the value V_0 stops changing.

4.2.2 graphing the results

Our final numerical results are:

V_0 = 32.629 +- 0.020 mV
v_1 = 0.022 +- 0.013 mV
theta_0 = -0.0202 +- 0.0020 radian

= -1.155 +- 0.112 degrees

We can now graphically compare the original data with our model (Eq. 2 ) using the best fit values for the
parameters:

plt.figure(figsize = (11,8)) #specify figure size as 7 x 5 inches
#for default size, type plt.figure()

plt.xlabel(r"$\theta$ [degrees]", fontsize = 18) #label axis (using LaTeX commands)
plt.ylabel(r"$V_{pd}$ [volts]", fontsize = 18) #use 18 point font for label text

# plot the data as before in blue
plt.errorbar(angle, V_pd,

xerr=None, yerr=V_pd_error,

linestyle = ’none’,

color = ’blue’,

capsize = 3, capthick = 1, label = "data")

#create curve showing fit to data

angle_fit = np.linspace(0, 360, 180)

theta_fit = angle_fit * np.pi / 180

V_pd_fit = polarization_model(theta_fit, fit[0], fit[1], fit[2])

#plot the curve fit in red
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plt.errorbar(angle_fit, V_pd_fit, xerr = None, yerr = None, color = ’red’, label = ’fit’ )
plt.x1lim(-15, 375)
plt.ylim(-2.5, 40)
plt.xticks ([0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360],
()07’ );’ )7’ 90’ ;)’ ;)’ 180, ))’ )7’ 270, )7, )7’ 360))
plt.legend(loc = ’best’)

plt.show()

The results are plotted in Fig. 2 below.

40

I data
— fit

35

30

25

Vpd [mV]

o 9 180 270 360
0 [degrees]

Figure 2: Curve fit of Eq. 2 to calibration data for 650 nm using best-fit values for parameters.

At first glance, the model appears to describe the data quite well, with the possible exception of the points
where V,q (0) is a maximum. To quantify the goodness of fit, however, we will need to evaluate the fit
residuals and chi-square test goodness of fit. See section 4.3.

Note: there are additional features of the curve_fit function not demonstrated here, including the ability to
set lower and upper bounds on each of the adjustable parameters. For example, setting the option bounds
= ([0, -np.pi, -1.0], [np.inf, +np.pi, 1.0])

would then force the best fit parameters to stay in the range 0 < Iy, —7m <6y <7 inrad, and —1 <

offset < +1. See the scipy.optimize.curve_fit documentation for details.

4.3 Evaluating the goodness of fit

We now have a best fit of the model to the data. How good a fit is it? That is, how well does the model
describe the data, taking into account the uncertainty in each data point? Two quick ways to test the
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goodness of fit of the model to the data are through calculations of the residuals and the reduced chi-square
value. See (Hughes and Hase, 2010) and (Berendsen, 2011).

4.3.1 residuals

The calculation of the residual errors is easy once the model is defined and the fitting parameters deter-
mined. Here is an example:

# theta = angle * np.pi / 180 # convert to radians

V_pd_model = polarization_model_1(theta, fit[0], fit[1], fit[2])
residual = V_pd - V_pd_model

The corresponding plot is shown in Fig. 3 below.

1.00

0.75

|
0.00 } } ; } } } ; )

-0.251 & }

residual error [mV]

—0.50

—0.75

—1.00

0 0 180 270 360
6 [degrees]

Figure 3: residual error compared with estimated measurement uncertainty for +o (in red) and £20 (in
orange). Most points are within one or two standard deviations of zero residual error, as expected for a
good fit to the data using Malus’s law, but the points do not appear randomly distributed. Instead, there
is a weak angular dependence suggesting a small uncorrected systematic misalignment of the light source
and/or polarizers with respect to the detector.

The residuals are generally within one standard deviation of zero but do not appear randomly distributed.
Instead there is a weak residual angular dependence. One possibility is that light beam, polarizers, and
detector are not perfectly centered and the polarization is not completely uniform across the entire surface
of the polarizer. Malus’s law does not however appear to be in question. Rather, the residuals indicate a
small level of polarizer-angle dependent systematic error.

4.3.2

4.3.3 chi-square test
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Once the residuals have been calculated, the determination of the corresponding chi-square value for goodness
of fit is straightforward. Here is an example:

from scipy.stats import chi2 # ’chi-square’ goodness of fit calculation

chisq = sum((residual/ data_uncertainty)#**2) # typo corrected 2/1/2019
degrees_of _freedom = len(residual) - len(initial_guess)

reduced_chisq = chisq / degrees_of_freedom # this should be close to one

CDF = chi2.cdf(chisq, degrees_of_freedom) # this should be close to 50 percent

print (’chi-square = ’,chisq)

print (’degrees of freedom ? ,degrees_of _freedom)

print (’reduced chi-square = ’,reduced_chisq)

print (’fractional probability of chisq [?]’, chisq, ’for ’, degrees_of_freedom, ’dof is’, CDF)

Ideally, if the model describes the data AND the estimated uncertainty of each point has been accurately
determined, the reduced chi-square value would be approximately equal to one (for large v) and the fractional
probability of x2 values larger and smaller than that measured would both be approximately 50%. Statis-
tically, however, we expect some reasonable random variation from the expected mean value of v for x2, |
meaning that statisticians generally will not reject the “null hypothesis” (that the model describes the data
and all deviations can be reasonably attributed to expected random variation) as long as x2, is within 2

standard deviations ( 20 ) of the mean value. Here, x2.,, = v and o, = v/2v (Hughes and Hase, 2010)
, so the criterion can be reexpressed as
v—2V20 < X2 i S VA4 2V20 (5)

Here are the results for the fit shown in Fig. 2:

chi-square test value x2,; = 15.3

degrees of freedom v = 25-3 = 22
reduced chi-square = 0.694

fractional probability of x? [?] 15.3 is 15.0%
fractional probability of x? > 15.3 is 85.0%

Here,0 = 2 v =6.6, X2,00n — 0 = 15.4,and x2,.,,, + ¢ = 28.6, indicating that our result is very slightly
outside one standard deviation of the mean but well within two standard deviations. We conclude that
we have acceptably good agreement between model and experiment at this level of experimental precision
but that further improvements in apparatus design, measurement method, and reduction in uncertainty are
merited.

5 Data Smoothing and Differentiation

5.1 Savitzky-Golay filters
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Data smoothing is a way of reducing time varying noise in measured data so as to reveal the underlying
dependence of the measured variable on a different variable (such as an applied voltage or an external
magnetic field). In most cases, the computer is acting as a digital low pass filter. It differs from an analog
low pass output filter in that the filtering is done by us using a computer after the measurement is complete
rather than by the instrument itself. Like the signal averaging done by a digital oscilloscope — the point by
point averaging of a periodic signal — data smoothing seeks to separate random noise from a reproducible
signal, but here the measured ‘signal’ to be smoothed is not assumed to be periodic and is in fact usually a
function of a variable other than time. An example would be the measurement of current as a function of
applied voltage for a non-ohmic device.

The SciPy (for scientific python) package offers an exhaustive list of signal processing functions useful for
the digital filtering. If you have some programming experience in Python, you may wish to design your own
filter, perhaps using the lower level scipy.signal filter design tools. There are, for example, a wide variety of
spectral analysis and peak finding routines for frequency data that we will not explore further here.

In this getting start guide, we will focus on the use of a particularly useful and easy to use ready-made filter
for data smoothing of y (z;) data equally spaced in a: the Savitzky-Golay low pass filter (Savitzky and
Golay, 1964; Steinier et al., 1972). This filter works by fitting a subset of data points adjacent to a particular
data point with a low-degree polynomial, evaluating the polynomial at that point, and then repeating the
process for each data point. The set of points centered about a particular data point is called the ‘filter
window’ and the number of points in the filter window is called the window length (although width would
seem more apt). The picture here might be of a small window in a cabin looking out upon a nearby data
stream. The window reveals a small subset of points at a time as the data “streams” by. The fit is carried
out on the points seen through the window, and repeated for each point in the stream.

As a bonus, the SciPy Savitzky-Golay filter function scipy.signal.savgol filter can also be used to
numerically differentiate the smoothed data (again, provided the data is “equally spaced”). This is a
particularly useful feature. For example, we might directly measure I (V') for a particular non-ohmic device
(such as a light bulb or LED) but be more interested theoretically in the differential current j—‘l/ as a function
of applied voltage V. Experimentally, the noise fluctuations in a measurement of [ as a function of Vmight
preclude a direct calculation of %. By first smoothing the data using a Savitzky-Golay filter to reduce the
noise, a meaningful calculation of % as a function of V' can now be carried out.

There are a few practical constraints:

1. the window length must be an odd number
2. the polynomial order (1, 2, 3, ...) must be less than the window length
3. the data points are assumed to be “evenly spaced” (for example in time, voltage, or magnetic field)

For example, when measuring current I as a function of applied voltage V from -10 to +30 V in equal steps
of 0.1 volts, specifying a window length of 21 points and a second order polynomial fit would correspond
to a fitting a quadratic function to a set of 21 points spanning a 2 V range centered about a particular
data point (including that point), then repeating that process for each subsequent data point. In the SciPy
implementation, this repeated fitting over a moving data stream is done automatically for us.

As noted above, the number of points included in the subset and the order of the polynomial must be specified
by the user. In all data smoothing routines, there is a tradeoff between the degree of smoothing and the
ability to resolve small features in the underlying signal; data smoothing is not a substitute for working as
carefully as possible to minimize the measurement noise and maximize the accuracy and precision of the
originally measured data! In the end, the ‘best values’ for these parameters are usually determined by trial
and error. Keep track of the values used when determining the resolution of your experiment!
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5.1.1 Scipy.Signal.Savgol filter

This filter can be implemented in Python with just two lines of code: one to import from
the scipy.signal module the function savgol_filter, and one more to carry out the data smoothing.

We first need to specify two parameters:

1. window_length, the number of adjacent data points we wish to include in the fit
2. polyorder, the order of the polynomial fit (where 0 = constant, 1 = linear, 2 = quadratic, and 3 =
cubic)

If we also want to calculate the slope of the data at each point by taking a derivative, we then need to specify
two additional parameters :

1. deriv, the order of the derivative (where 0 = no derivative, 1 = first derivative, 2 = 2nd derivative,. . .)
2. delta, the spacing of the samples to which the filter will be applied.

As an example, suppose we want again to determine % from a measurement of I (V') for applied volt-

ages between -10 V and +30 V and that measurements were made evenly spaced in voltage with a step size
of 0.1 V. If so, we then specify that deriv = 1 and delta = 0.1 within the savgol_filter function.

Finally, for the computed derivative to be physically and quantitatively meaningful,

1. the order of the polynomial fit needs to be greater than the order of derivative (!)
2. The delta value needs to be correctly specified. If unspecified, it is assumed that delta = 1.

As usual, there are additional optional settings, including options for how to handle data near the endpoints
(see mode): the default (mode = interp) is to fit the last window_length / 2 points to a polynomial of order
polyorder. For this and other details, see the Scipy reference manual page.

5.1.2 Sample Python code
Here is an example of how to use the SciPy function savgol_filter for data smoothing.

from scipy.signal import savgol_filter

window_width = 25 # set number of points over which data is fit and smoothed equal to 25
# window_width must be an odd number

polynomial_order = 2 # set order of polynominal used to fit data equal to 2
# polynomial_order must be less than window_width

data_spacing = 0.1 # data_spacing = x_1 - x_0 for data y(x_0), y(x_1),

smoothed_data = savgol_filter(noisy_data, window_width, polynomial_order) #smooth data

data_derivative = savgol_filter(noisy_data, window_width, polynomial_order, deriv = 1, delta = 0.1) #ta

An example of data smoothing using the Savitzky-Golay low pass filter is shown in Fig 4. Since for real
experimental data the original ‘clean signal’ is unknown, the degree of smoothing is always a matter of
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judgement. A comparison of several different smoothing values (not shown) can be useful in discerning the
best choice of parameters and the effective resolution of your processed data (and any derivatives) .

10
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0.0

-0.5
= clean signal
noisy signal
-1.0 | v —— filtered signal

-1.00 —0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 100

Figure 4: Use of a Savitzky-Golay low pass filter to smooth (artificially generated) noisy data.

In general, increasing the window width increases the degree of smoothing, causing small features in the
original ‘clean signal’ to disappear; decreasing the window width decreasing the degree of smoothing, causing
artificial features (arising from the noise) to emerge. Increasing the order of the polynomial while holding the
window width constant decreases the degree of noise reduction but is needed for if there is significant data
curvature over the width of the smoothing window. To see this for yourself, this click first on the </> Code
button, then on the file name Smooth_and differentiate.ipynb to open and view the underlying Jupyter
notebook containing the Python code used to generate this figure. Once opened, you can vary the smoothing
parameters and re-run the notebook to see the changes. You can also download the notebook to your own
computer as a template.

5.2 Butterworth filters

Everyone has there own favorite low pass filter smoothing routine. The Savitky-Golay method presented
here is a useful and intuitive place to start but it is not necessarily better or worse than any other smoothing
routine. For more advanced filtering methods and examples, see the SciPy Cookbook and the SciPy signal
processing reference guide.

Two examples of particular interest from the SciPy Cookbook involve Butterworth filters,  which are
designed to have as flat a frequency response as possible over the range of frequencies to be passed while
still filtering out unwanted frequencies (such as high frequency noise):

1. a Butterworth bandpass filter to filter out high frequency noise, low frequency noise, and dc drift
2. a Butterworth low pass filter for general data smoothing

Note: The use of a Butterworth filter requires the specification of a cutoff frequency (or frequencies). For a
digital Butterworth filter, varying the value of the normalized Nyquist_frequency between zero and one will
change the degree of smoothing provided. Lower values produce greater smoothing of the data.

20


http://scipy-cookbook.readthedocs.io/items/idx_signal_processing.html
https://docs.scipy.org/doc/scipy/reference/signal.html#module-scipy.signal
https://en.wikipedia.org/wiki/Butterworth_filter
http://scipy-cookbook.readthedocs.io/items/ButterworthBandpass.html
http://scipy-cookbook.readthedocs.io/items/FiltFilt.html
https://en.wikipedia.org/wiki/Butterworth_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html#scipy.signal.butter

The example in Fig. 5 below uses a 3rd order digital Butterworth low-pass filter with a Nyquist frequency of
0.13 (see attached code) to smooth the same signal as in Fig. 4 ; the originalSciPy cookbook example uses a
frequency of 0.05. See the SciPy cookbook and the Jupyter notebook attached to this figure for additional
details.

15+
104
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1.0 I — filtered signal
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-1.00 —0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 100

Figure 5: Use of a digital Butterworth low-pass filter (and some fancy footwork) to smooth the same data
as in Fig. 4.

5.3 Differentiation

One of the most common reasons for data smoothing is to then be able to differentiate the data. As
noted earlier in section 5.1.1, one of the advantages of using scipy.signal.savgol filter is that the data
smoothing and differentiation can be done in a single step (when working with evenly spaced data). Here is
an example (for the data originally shown in Fig. 4):

151 —— filtered signal

1st derivative

10 1

-10

1,00 078 050 025 0.00 0.25 0.50 075 100

Figure 6: Filtered signal and first derivative of data shown in FIg. 4 . Numerical results calculated (from
noisy signal) using the SciPy Savitzky-Golay filter function (window width = 25, polyorder = 2).
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More generally, however, the numerical derivative of a suitably filtered signal y (x) can also be evaluated
at each x value using the numpy function gradient where for a 1D array of data the gradient will be the
same as the derivative %. According to the numpy.gradient reference page , this function “calculates the
gradient using second order accurate central differences in the interior points and either first or second order
accurate one-sides (forward or backwards) differences at the boundaries. ” It also has the advantage of not
requiring equally spaced data values. See the reference page for further examples and details.

Here is a simple example of how to use gradient to numerically calculate % from smoothed f (z;) data
without knowledge of the function f (z), assuming that the data is equally spaced with a sample distance dx
of 0.1:

import numpy as np

data_derivative_array = np.gradient(smoothed_data_array, 0.1)
Gradient can also used with unequally spaced values, if those values are provided. Here is one example:
import numpy as np

x = np.array([0., 1., 1.5, 3.5, 4., 6.], dtype = float)
f np.array([1, 2, 4, 7, 11, 16], dtype = float)

dfdx = np.gradient(f,x)

For a more general guide to numerical differentiation and integration (in which you also learn how to
code your own routines using numpy), see Chapter 5: Integrals and Derivatives from the Python-based
textbook Computational Physics by Mark Newman (Newman, 2013).

6 Interpolation and Peak Finding

6.1 interpld

Perhaps the most commonly used interpolating function in python is scipy.interpolate.interpid. The
default option is linear interpolation but for sparsely separated data a cubic spline is often preferable. See
the interpld manual page for additional options and details.

Here is an example of how to use interpld to construct a cubic spline interpolation of sparse data.
First, import the necessary python packages and data:

#setup Jupyter notebook
%matplotlib inline
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#import packages and functions

import matplotlib as mpl

import matplotlib.pyplot as plt

import numpy as np

from scipy.interpolate import interpld # this is the 1d iterpolation function

#specify data file location
file_name = ’Calibration_650nm_result.csv’
file_folder = ’/Users/nfortune/data/’

#import data from CSV text file

angle, V_pd, data_uncertainty = np.loadtxt(
file_folder + file_name,
delimiter = ’,’, skiprows =1,
usecols = (0, 1, 2), unpack = True)

Second, construct an interpolating function from the data, then use it to generate new (interpo-
lated) values

#construct an interpolating function from the data
interpolating_function = interpld(angle, V_pd, kind = ’cubic’) # create interpolation function

#create array of new angle values for interpolation
new_angle_values = np.linspace(0, 360, 180) # in degrees

#evaluate at new angle values
interpolated_data = interpolating_function(new_angle_values)

Third, graph the results:

plt.figure(figsize = (11,8)) #specify figure size as 7 x 5 inches
#for default size, type plt.figure()

plt.errorbar(angle, V_pd, xerr=None, yerr=data_uncertainty,
linestyle = ’none’, color = ’blue’, capsize = 3, capthick = 2,
label = "original data points")

plt.errorbar(new_angle_values, interpolated_data, xerr = None, yerr = None,
color = ’black’,
label = ’cubic spline interpolation’)

plt.xlabel(r"$\theta$ [degrees]", fontsize = 18) #label axis (using LaTeX commands)
plt.ylabel(r"$V_{pd}$ [mV]", fontsize = 18)  #use 18 point font for label text
plt.xlim(-15, 375)
plt.ylim(-2.5, 40)
plt.xticks([0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360],

(707’ 77’ )7, 90, :7’ :7, 180, :7, )7’ 270’ 77’ 77’ 360))
plt.legend(loc = ’best’)

plt.show()

The results are shown in Fig. 7.
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Figure 7: cubic spline interpolation of 650 nm calibration data using scipy.interpolate.interpld
6.2 InterpolatedUnivariateSpline

Not surprisingly, the function interpld is just one of many spline functions and classes, one-dimensional
(univariate) and multidimensional (multivariate) interpolation classes, and Lagrange, Taylor, and Pade
polynomial interpolators. For a comprehensive list, see the scipy.interpolate reference manual.

Two of these might be of particular interest to you in the analysis of 1D data:

1. UnivariateSpline, which constructs a 1D smoothing spline of degree k to the provided x,y data
2. InterpolatedUnivariateSpline, which constructs a 1D spline that passes through all data points

Their advantages include

e the ability to construct a new spline representing the derivative of the original spline
e the ability to construct a new spline representing an integral of the original spline
e and for 3rd order splines, the ability to find the roots (zero crossings) of the spline

Note: these ‘object-oriented’ interpolating functions are technically what Python calls classes rather than
functions. For us that just means there are a few differences in syntax and usage we will need to pay attention
to, but in exchange, we get a much more powerful interpolation routine.

Here we show how to use InterpolatedUnivariateSpline to interpolate the same data as before us-
ing a 4th order spline, find a (3rd order) derivative, find the roots of that derivative, and then use that
information to identify the extrema for the original interpolating spline. For corresponding examples us-
ing UnivariateSpline, see the reference manual page.

Let us assume we have imported the data as before and are now ready to interpolate the data. Interpolation
is again a two-step process: construct an interpolating function, then apply it to generate new data values.
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from scipy.interpolate import InterpolatedUnivariateSpline

#construct interpolating function
InterpolatingUnivariateSpline_function = InterpolatedUnivariateSpline( angle, V_pd, k = 4) # 4th order .

#create array of new angle values for interpolation
new_angle_values = np.linspace(0, 360, 180) # in degrees

# generate new data values
IUS_interpolated_data = InterpolatingUnivariateSpline_function(angle_fit)

When graphed, the new interpolated spline fit is indistinguishable from the previous one using interpld:
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Figure 8: Comparison of two spline interpolations with data. The two methods give nearly equivalent results
(so the interpld cubic spline interpolation is black is largely overwritten by the InterpolatingUnivariateSpline
4th order interpolation in blue).

As will be shown below, the true value of the InterpolatingUnivariateSpline method is in the ability to find
derivatives and roots. Here we first construct a generating function for the 1st derivative of the original
univariate spline, then use that to evaluate the derivative at the same points as before:

spline_derivative_function = InterpolatingUnivariateSpline_function.derivative()

data_derivative = spline_derivative_function(angle_fit)
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Next, we find the roots of the derivative and the corresponding extrema of the original interpolating spline:

zero_crossings = InterpolatingUnivariateSpline_function.derivative().roots()
extrema_values

InterpolatingUnivariateSpline_function(zero_crossings)

zero_values = np.zeros(len(zero_crossings)) # generate an array of zeros

The results are shown in Fig 9 for the derivative

0.6 1 — Univariate Spline Derivative
®  zero crossings (roots)

0.4

0.2

0.0

Vpa [MV]

o 9 180 270 360
6 [degrees]

Figure 9: Derivative of the interpolating spline function

and in FIg. 10 for the original interpolating spline:

6.3 peak finding

This can be a handy way to peaks and valleys in your data but depending on the noise level it may identify a
sequence of points rather than a single value. You may be able to address this by smoothing the data before
interpolation, but for more advanced peak finding routines (including determination of peak widths and
relative degree of prominence), see the links to the peak finding routines on the scipy.signal reference
manual page. Examples can be found at the bottom of the reference pages for each function.
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Figure 10: Locations of extrema (peaks and valleys) for the interpolated data

7

8 Working with units and uncertainties

When using Python in place of a calculator, we have the ability to directly include information about
dimensions, units and uncertainties in the calculations. When used, these abilities offer the advantage of al-
lowing us to check algebraic calculations, automatically propagate uncertainties in calculated quantities, and
avoid unit conversion errors, but the necessary Python modules are not included in the standard Anaconda
Navigator Python installation and must be added by hand if needed.

Note for Smith students: these additional modules are already installed on the classroom computers for
PHY 350 and the Smith Physics Jupyter webserver at https://jove.smith.edu. (The https is necessary).

8.1 Calculations with units

In the PHY350 Experimental Physics course here at Smith College, we make extensive use of the Python
module Pint by Hernan Greco. A tutorial for Pint is available here.

Here is an example of using Pint for calculator-like calculations with units:
import numpy as np

import pint

unit = pint.UnitRegistry() # for clarity, we use ’unit’ instead of the default ’ureg’
Q_ = unit.Quantity
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g = 9.8 * unit.newton / unit.kg # define quantities with units
m = Q_(1.0, ’kg’) # an alternative method

force = m * g #define calculated quantity

print(force)
9.8 newton # sample output

Pint also includes support for numpy arrays, as shown in this example:

>>> mass_magnitudes = np.array([0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0])
>>> masses = mass_magnitudes * unit.kg

>>> print(’{:"P}’.format (masses))

[ 0.1 0.2 0.5 1. 2. 5. 10. 1] kg

>>> masses.magnitude
array([ 0.1, 0.2, 0.5, 1., 2., 5., 10. 1D

>>> print (’{:"P}’.format (masses * g))
[ 0.98 1.96 4.9 9.8 19.6  49. 98. 1N

You can view the complete notebook by clicking on the </> Code button to the left of Fig. below, then
clicking on the file named PintTest.ipynb . Doing so will open up the notebook in Jupyter webserver hosted
by Authorea.

Note: in some cases, Python notebooks such as these can be run and modified within the Authorea Jupyter
notebook webserver. In this case, however, you must first download the code to your own computer, as
Pint is not yet included in the Authorea’s python installation. Note about print formatting commands:
the ~ command instructs Pint to output units in abbreviated form. The P command adds subscript and
superscript formatting. See the Pint tutorial.

8.2 Calculations with uncertainties

For simple first-order ("linear’) error propagation involving quantities with units, you can use Pint’s handy
plus_minus() operator. It allows absolute and relative uncertainties:

import numpy as np

from pint import UnitRegistry

unit = UnitRegistry()

width = (10. * unit.centimeter).plus_minus(.1, relative=True) # 10 percent uncertainty
length = (20. * unit.centimeter).plus_minus(2.) # 2 cm uncertainty

area = length * width

print (width)
print(length)
print (’{:"P}’ .format(area))

(10.0 +/- 1.0) centimeter

(20.0 +/- 2.0) centimeter
(200 \selectlanguage{ngerman}+ 28) cm?
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demonstration of pint

In [3]: m=90 (1.0, "kg')
g = 9.8 * unit.newton / unit.kg
print(m)
print(g)
1.0 kilogram
9.8 newton / kilogram
In [4]: print('{:~P} ' .format(g))
9.8 N/kg
In [5]¢ g_acceleration = g.to_base_ units()

print('{:-P}'.format(g_acceleration})

9.8 m/s?

sample calculations

In [6]: gravitational force = m * g
print('{:~1gP}'.format(gravitational force))

9.8 N

In [7]: print(gravitational force.magnitude)
print(gravitational force.units)
print(gravitational_ force.dimensionality)

9.8
newton
[length] * [mass] / [time] ** 2

Figure 11: an extract of the Jupyter notebook PintTest.ipynb demonstrating the use of Pint to do calcula-
tions in Python using units.

For details, see the Pint measurements tutorial.

For general propagation of uncertainty tasks , we use Uncertainties: a Python package written by Eric.
O. Lebigot, the same package Pint uses “under the hood” for calculations invoking .plusminus(). The
uncertainties module returns its result with the uncertainty specified by linear error propagation theory,
taking into account any direct correlations between variables. Quoting from the uncertainties website,

The standard deviations and nominal values calculated by this package are thus meaningful
approximations as long as uncertainties are “small”. A more precise version of this constraint
is that the final calculated functions must have precise linear expansions in the region
where the probability distribution of their variables is the largest. Mathematically,
this means that the linear terms of the final calculated functions around the nominal values of
their variables should be much larger than the remaining higher-order terms over the region of
significant probability (because such higher-order contributions are neglected).

For example, calculating x*10 with x = 5+3 gives a perfect result since the calculated function
is linear... Another example is sin(0+/-0.01), for which uncertainties yields a meaningful
standard deviation since the sine is quite linear over 04+0.01. However, cos(0+/-0.01), yields
an approximate standard deviation of 0 because it is parabolic around 0 instead of linear; this
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might not be precise enough for all applications.

Here we provide a demonstration of how to use Uncertainties to calculate the uncertainty values (error bars)
for the data shown in Fig. 1).

First, import the data and assign values, including specification of uncertainties to the input parame-
ters Vo, V1, 0y and the data array 6.

fmatplotlib inline

#import packages

from matplotlib import pyplot as plt

from numpy import *

from uncertainties import ufloat, unumpy # these are extensions of numpy floating point numbers and ar:

#import x, y data
filename = ’Calibration_650nm.csv’
angle_data, V_pd_data = loadtxt(filename, delimiter = ’,’, skiprows = 1, usecols = (1, 2), unpack = Tru

#specify directly measured values, including uncertainties: V_O0 * delta_V_0, V_1 * delta_V_1, etc

V_0 = ufloat(32.631, 0.024) # first element is the nominal value, the second is the standard dev, both
V_1 = ufloat(0.023, 0.016) # first element is the nominal value, the second is the standard dev, both i
theta_0 = ufloat(-1.16, 0.11) * pi / 180 # convert from degrees to radians

#convert to radians for use in trigonometric functions
theta_data = angle_data * pi / 180
delta_theta = 0.5 * pi / 180

# create an array of angle values with uncertainty
theta_array = unumpy.uarray(theta_data, delta_theta)

Next, use uncertainties to automatically propagate uncertainty. The uncertainties package automatically cal-
culates derivatives as needed (see, for example, Eq. 3), following the standard rules for propagation of error:

#to calculate values while also automatically taking into account uncertainties, use unumpy instead of :
V_pd_theory = (1/2)*V_0 * (1 + unumpy.cos(2*(theta_array - theta_0 ))) + V_1 #notice use of unumpy.cos

values = unumpy.nominal_values(V_pd_array) #creates an array with best estimates of V_pd
uncertainties = unumpy.std_devs(V_pd_array) #creates an array with uncertainties for V_pd

Here are the first three calculated values of V4 corresponding to § = 0, 15, 30 degrees that result (including
the calculated uncertainty) :

print (angle_data[0:3])
[ 0. 15. 30.]

print (V_pd_theory[0:3])

[32.64055493822073+/-0.03115762246979197
30.125380043639208+/-0.1578587386098956
23.916021775219797+/-0.25858767540002414]

and a corresponding graph comparing the data (in blue) with the calculated values (in red), including
calculated uncertainties (shown as error bars):
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Figure 12: Comparison of data (in blue) with calculated values for V,q () from Eq. 2. Error bars for
calculated values were determined automatically from the uncertainties in the input parameters (using
the uncertainties package and Eq. 2 instead of Eq. 4).

Notice that our original approach in section 4.1 of explicitly calculating the uncertainty in V,q from Eq. 4
and this new approach of using the uncertainties package give equivalent results, but that in both cases
we needed a good estimate of Vj == 64 to determine V4 = 6V,,q at each value of 6.

In general, either of these two approaches will be sufficient for most of our work with data, but notice that
because both involve linear expansions of functions about their nominal values, both yield an unrealistically
low uncertainty of zero for small variations in Vj and ¢ (neglecting 6V; for now) at ¢ = 6 — 6y =0 . This is
because an Taylor expansion of cos (¢) around ¢ = 0 yields cos (0 £d¢p) = 0 + 0 -dp+ %-(5(;5)2 4+ ..=0
in the linear approximation limit (which treats terms of order (5¢>)2 and higher as being negligibly small).

If you need still more advanced approaches topropagation of uncertainty, the author of uncertainties rec-
ommends looking at soerp and mcerp. According to the uncertainties website, ”the soerp package per-
forms second-order error propagation: this is still quite fast, but the standard deviation of higher-order func-
tions like f(x) = x3 for x = 040.1 is calculated as being exactly zero (as with uncertainties). The mcerp
package performs Monte-Carlo calculations, and can in principle yield very precise results, but calculations
are much slower than with approximation schemes.”

9 Installing Python

This section is only relevant if you are planning on running Python on your own computer. If you are running
Python within a Jupyter notebook on a webserver or a computer account which has already been configured
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for your use (such as https://jove.smith.edu for Smith College physics) , this section can be skipped.

9.1 Python distributions

Our focus in this article is on the use of Python to expedite the analysis of your experimental data and
not, for example, the specifics of various Python distributions and their relative merits for computational
physics in terms of speed, accuracy, and memory requirements.

We therefore recommend that if you need to install a Python distribution for scientific data analysis in
physics on your own computer, you choose an installer that will automatically install Python, interactive
Python (iPython) and Jupyter notebooks, scientific python development environments (editing, testing,
debugging) such as Spyder or Canopy, and essential Scientific Python packages (such as numpy, matplotlib
and scipy) in a single step, rather than building this from scratch. This provides ease of installation, ease of
use, and a comprehensive curated set of preinstalled and easily added packages.

Two of the most popular distributions and installers are from Anaconda and Enthought. Both are freely
available for Mac OS, Linux, and Windows . Either should do what you need. That said, the examples
presented below for installation of additional Python packages assume the use of Anaconda Navigator.

Also, if you are using this for a Smith Physics course, we ask you to use Anaconda Navigator if you wish us
to be able to provide support with installation and programming (since that is what we are using).

9.1.1 Installing Anaconda Navigator

Download the latest version of Anaconda Navigator here. Be sure to chose the Python 3.x version of Python
(and not the older version 2.7), as all of the examples provided here assume the use of Python 3. After
installation, restart and launch the Anaconda Navigator app. You should then be able to launch a Jupyter
notebook from either the graphical interface or environments tab (see Figure 13) to be officially off and
running.

OK, you also need to install some supplementary packages if you want to be able to do calculations that
include units and/or uncertainties. But it isn’t difficult within Anaconda to do that. See section 9.3 below.

9.1.2 Building your own distribution

Still prefer to build your own clean, lean, and mean Python installation and willing to blaze (and maintain)
your own trail ? Here’s a guide to getting started that results in an exceptionally lean installation suitable
for use in computational physics. If you want to run the example code provided here on your own computer,
however, you will also want to install the iPython, Jupyter, and Scipy packages (at a minimum). Other
packages may be needed as well; one tried and true but tedious way to do this is to attempt to run the code
and then let the computer tell you what you are missing!

Finally, if you are an experienced and independent-minded Python programmer (and would you have read
the previous paragraph if you weren’t?), you may ask, “Why Jupyter?” Why not use the Python or iPython
command line directly, use a bare-bones editor such as IDLE ;| or a more comprehensive MATLAB like
programming environment like Spyder? If you are in one of our Smith Physics courses, the answer is because
we use Jupyter notebooks not only to run Python code but also to generate a partially “self-documenting”
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electronic lab notebook as we do so. If you are doing a lot of programming requiring extensive re-writing
and debugging, you may prefer to first work in development environment like Spyder, then run the finished
product within Jupyter to generate a notebook version of the data analysis, but in experimental physics, you
still need to keep an comprehensive electronic notebook of your instrument setup, measurement, and data
analysis steps! Finally, note that the command line is convenient for quick calculations and tests of code but
is inadequate for serious editing and debugging, and does not provide a reproducible record of your results.
As a calculator it is great but as a notebook it is not! There’s really no good reason as an experimental
physicist with a computer at your disposal not to use an electronic notebook instead of a calculator in the
first place. Get with the program! :)

9.2 Using the Anaconda installer

Packages included in the Anaconda Python distribution can be installed and updated using the Anaconda
Navigator installer. This has an easy to use graphical interface. As a bonus, any needed auxiliary files
will updated at the same time . Potential conflicts between packages will also be identified ahead of time.
See the section of the Getting Starting guide provided by Anaconda titled Managing Packages for step by
step instructions.

9.3 Using command line installers

Packages not included in the standard Anaconda Navigator installer can still be installed using Anaconda
Navigator. To do so,

1. open a terminal window from with Anaconda Navigator (see figure 13 below )
2. issue the installation command. See below for examples using conda (section 9.3.1) and pip (sec-
tion 9.3.2)

Be sure to closely follow the installation instructions provided with the documentation for the package. In
most cases it is straightforward but sometimes extensions are also needed. If the package can be installed
using either conda or pip, choose conda (as conda will also install needed extensions).

oo e O Anaconda Navigator
£ ANACONDA NAVIGATOR Signinto Anaconda Coud
A Home
[ search Enviranments a [ nstatied | chemels  updae incex
@ Environments base (root) > Open Terminal T Description Version ~
Open with Python O Aset of functions that implement regular expression pattern matehing 841
. NBEXTENSIONS,
N Learning
Open with IPython
Python27 ) Python style guide checker A 1T0
. Open with Jupyter Notebook
2% Community
TR GRG0 Pexpect allows easy control of nteractive console applications 4z
< pickleshare O File system based database that uses python pickles 074
Documentation pillow. O The Friendly python imaging library(pil) fork 2 az
Developer Blog . a 081
Feedoack o 5) EEEETTE T T S 2 90
o = pkginfo Query metadatdats from sdists or bdists installed packages 2 1a v
v ? ® o @ o
Create Import 245 packages avallzble

Last login: Mon May 21 11:
7-phy@06694:~ nfortu /. anac:
(base) bash-3.2$ pip install —upgrade pint

Figure 13: How to open a terminal window within Anaconda Navigator.
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9.3.1 conda install

Here is an example of how to use the conda command while in the terminal window to install Pint, a
Python package written by Hernan E. Grecco to define, operate and manipulate physical quantities: the
product of a numerical value and a unit of measurement.

conda install -c conda-forge pint

9.3.2 pip install

Here is an example of how to use the pip command while in the terminal window to install uncertainties, a
Python package written by Eric. O. Lebigot that transparently handles calculations with numbers with
uncertainties (like 3.1440.01).

pip install --upgrade uncertainties

Upgrades can be done in a similar way. To upgrade Pint, for example, type the following while in a terminal
window:

pip install -U pint

Note that you shouldn’t be running any notebooks within Anaconda when you do this! Best practice is to
restart Anaconda Navigator first, then install upgrades, then open a Jupyter notebook to launch Python.
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