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Abstract

We argue that a global time index may not be computable. Time and simultaneity can be computable only locally.
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Abstract

We argue that a global time index may not be computable. Time and
simultaneity can be computable only locally.

Time and the Halting Problem

The Halting Problem, at heart, is a time problem. It asks the following question:
Can we classify computer programs, by looking at their code, into those that
execute and stop (or halt), and those that keep running forever? This problem
is unsolvable: There is no algorithm or program that can tell upfront if an
arbitrary program shall halt or not. So, basically, it is a problem of the time
needed for a program to execute and halt.

We may generalize the Halting Problem as follows. Suppose we want to rank
all computer programs according to the time they take to execute their code.
We do this using a dedicated computer program, call it Global Clock or GC.
The GC will rank all programs along a Global Time Index. Does GC exist?
Can we compute a global time index? This problem is a generalization of the
Halting Problem, and so we expect it to be unsolvable as well.

Theorem: A global time index is not computable.

Proof : Let E denote the universe of all computer programs. The Global Clock
is a program in E that ranks all members of E along a global time index. For
any program e ∈ E , let T (e) = n be an index that assigns an integer n ∈
[1,+∞), indicating how fast each program is to execute its code relative to
other programs. For example, if all programs are initiated at n = 0, then the
first program to execute and halt will be assigned n = 1 along the global time
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index; the second fastest program will be assigned n = 2, and so on. Programs
that execute and halt simultaneously will have the same index number n. Non-
halting programs are assigned ∞.

Now suppose that we partition the global time index into two exhaustive
and mutually exclusive segments:

• T1 = {n|n ∈ [1, N ]} for an arbitrary N , and

• T2 = {n|n ∈ [N + 1,+∞)}.

Next, let us classify all the programs in E based on their ranking in these two
segments:

• E1 = {en | T (en) ∈ T1}, the set of all programs that execute within T1,
and

• E2 = {en | T (en) ∈ T2}, the set of all programs that execute within T2.

Now, E1 and E2 are computed simultaneously : once E1 is computed, E2 is
automatically computed, and vice versa. They are members of E because the
latter involves all executing programs, including the Global Clock. This means
that E1 and E2 must belong to the same segment, either T1 or T2. But this is
impossible because T1 and T2, and therefore E1 and E2, are mutually exclusive.
It follows that a computable global time index T (e), and therefore a Global
Clock program, cannot exist. Q.E.D.

The absence of a global time implies the absence of a global “now,” and,
thus, the absence of absolute simultaneity.

Corollary: A global “now” is not computable.

Proof : Recall that simultaneous programs will have the same index number n

on the global time index T (e) if the latter exists. Define the function:

S(ei) =

{
1 if ∃ei, ej , ei 6= ej , such that T (ei) = T (ej)

0 otherwise

Suppose we classify all programs in E into two mutually exclusive sets: the
set of simultaneous programs, i.e., those that take the same amount of time to
execute, and the set of non-simultaneous programs:

• ES = {en | S(en) = 1}, the set of all simultaneous programs, and
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• ENS = {en | S(en) = 0}, the set of all non-simultaneous ones.

As pointed out earlier, the two sets ES and ENS are identified simultaneously.
This implies that S(ES) = S(ENS) = 1. Thus, both sets must belong to ES .
There is no issue if ES ∈ ES . But if ENS ∈ ES , this contradicts the assumption
that the two are mutually exclusive. It follows that there is no function S(e)

that can determine global simultaneity. Time and simultaneity, therefore, can
be computable only locally. Q.E.D.
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