References
1. Garcia CS, Menti C, Lambert AP,
Barcellos T, et al. Pharmacological perspectives from Brazilian Salvia
officinalis (Lamiaceae): antioxidant, and antitumor in mammalian cells.
An Acad Bras Cienc. 2016; 88(1): 281-92.
2. Kozics K, Klusova V, Srancikova A, Mucaji P, et al. Effects of Salvia
officinalis and Thymus vulgaris on oxidant-induced DNA damage and
antioxidant status in HepG2 cells. Food Chem. 2013; 141(3): 2198-206.
3. Zare Shahneh F, Valiyari S, Baradaran B, Abdolalizadeh J, et al.
Inhibitory and cytotoxic activities of salvia officinalis L. Extract on
human lymphoma and leukemia cells by induction of apoptosis. Adv Pharm
Bull. 2013; 3(1): 51-5.
4. Zhang Y, Smuts JP, Dodbiba E, Rangarajan R, et al. Degradation study
of carnosic acid, carnosol, rosmarinic acid, and rosemary extract
(Rosmarinus officinalis L.) assessed using HPLC. J Agric Food Chem.
2012; 60(36): 9305-14.
5. Zhou R, Long H, Zhang B, Lao Z, et al. Salvianolic acid B, an
antioxidant derived from Salvia militarize, protects mice against
gammaradiationinduced damage through Nrf2/Bach1. Mol Med Rep. 2019;
19(2): 1309-17.
6. Jiang Y, Zhang L, Rupasinghe HP. Antiproliferative effects of
extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on
hepatocellular carcinoma cells. Biomed Pharmacother. 2017; 85: 57-67.
7. Ghorbani A, Esmaeilizadeh M. Pharmacological properties of Salvia
officinalis and its components. J Tradit Complement Med. 2017; 7(4):
433-40.
8. Poulios E, Giaginis C,Vasios GK. Current Advances on the Extraction
and Identification of Bioactive Components of Sage (Salvia spp.). Curr
Pharm Biotechnol. 2019; 20(10): 845-57.
9. Naimi M, Vlavcheski F, Shamshoum H, Tsiani E. Rosemary Extract as a
Potential Anti-Hyperglycemic Agent: Current Evidence and Future
Perspectives. Nutrients. 2017; 9(9): 968.
10. Thevenot P., Cho J., Wavhal D., Timmons R.B., Tang L. Surface
chemistry influences cancer killing effect of TiO2nanoparticles. Nanomedicine. 2008;4:226–236.
11. Colon J., Hsieh N., Ferguson A., Kupelian P., Seal S., Jenkins D.W.,
Baker C.H. Cerium oxide nanoparticles protect gastrointestinal
epithelium from radiation-induced damage by reduction of reactive oxygen
species and upregulation of superoxide dismutase 2. Nanomedicine.
2010;6:698–705.
12. Wason M.S., Colon J., Das S., Seal S., Turkson J., Zhao J., Baker
C.H. Sensitization of pancreatic cancer cells to radiation by cerium
oxide nanoparticle-induced ROS production. Nanomedicine.
2013;9:558–569.
13. Tarnuzzer R.W., Colon J., Patil S., Seal S. Vacancy engineered ceria
nanostructures for protection from radiation-induced cellular damage.
Nano Lett. 2005;5:2573–2577.
14. Ali D., Alarifi S., Alkahtani S., AlKahtane A.A., Almalik A. Cerium
oxide nanoparticles induce oxidative stress and genotoxicity in human
skin melanoma cells. Cell Biochem. Biophys. 2014;71:1643–1651.
15. Neri D., Supuran C.T. Interfering with pH regulation in tumors as a
therapeutic strategy. Nat. Rev. Drug Discov. 2011;10:767–777.
16. Seo J.W., Chung H., Kim M.Y., Lee J., Choi I.H., Cheon J.
Development of watersoluble single-crystalline TiO2nanoparticles for photocatalytic cancer-cell treatment. Small.
2007;3:850–853.
17. Hou Z., Zhang Y., Deng K., Chen Y., Li X., Deng X., Cheng Z., Lian
H., Li C., Lin J. UV-emitting upconversion-based TiO2photosensitizing nanoplatform: Near-infrared light mediated in
vivo photodynamic therapy via mitochondria-involved apoptosis pathway.
ACS Nano. 2015;9:2584–2599.
18. Cui S., Yin D., Chen Y., Di Y., Chen H., Ma Y., Achilefu S., Gu Y.In vivo targeted deep-tissue photodynamic therapy based on
near-infrared light triggered upconversion nanoconstruct. ACS Nano.
2013;7:676–688.
19. Lucky S.S., Idris N.M., Li Z., Huang K., Soo K.C., Zhang Y. Titania
coated upconversion nanoparticles for near-infrared light triggered
photodynamic therapy. ACS Nano. 2015;9:191–205.
20. Idris N.M., Lucky S.S., Li Z., Huang K., Zhang Y. Photoactivation of
core-shell titania coated upconversion nanoparticles and their effect on
cell death. J. Mater. Chem. B. 2014;2:7017–7026.
21. Prasad, K.S., Shivamallu, C., Shruthi, G., Prasad, M., 2018. A Novel
and One‐pot Green Synthesis of Vanadium Oxide Nanorods Using a
Phytomolecule Isolated from Phyllanthus amarus. ChemistrySelect 3,
3860-3865.
22. Zangeneh, M. M., Zangeneh, A., Pirabbasi, E., Moradi, R., Almasi. M.
(2019). Appl. Organometal. Chem.33 , e5246
23. Jalalvand, A. R., Zhaleh, M., Goorani, S., Zangeneh, M. M., Seydi,
N., Zangeneh, A., Moradi, R. (2019). J. Photochem. Photobiol. B.: Biol.192 , 103–112.
24. Karthik, K., Nikolova, M. P., Phuruangrat, A., Pushpa, S., Revathi,
V., & Subbulakshmi, M. (2020). Ultrasound-assisted synthesis of V2O5
nanoparticles for photocatalytic and antibacterial
studies. Materials Research Innovations , 24 (4), 229-234.
25. Seydi, N., Mahdavi, B., Paydarfard, S., Zangeneh, A., Zangeneh,
M.M., Najafi, F., Jalalvand, A.R., Pirabbasi, E., 2019. Preparation,
characterization, and assessment of cytotoxicity, antioxidant,
antibacterial, antifungal, and cutaneous wound healing properties of
titanium nanoparticles using aqueous extract of Ziziphora clinopodioides
Lam leaves. Applied Organometallic Chemistry 33, e5009.
26. Baghayeri, M., Mahdavi, B., Hosseinpor‐Mohsen Abadi, Z., Farhadi,
S., 2018. Green synthesis of silver nanoparticles using water extract of
Salvia leriifolia: Antibacterial studies and applications as catalysts
in the electrochemical detection of nitrite. Applied Organometallic
Chemistry 32, e4057.
27. Mahdavi, B., Paydarfard, S., Rezaei‐Seresht, E., Baghayeri, M., &
Nodehi, M. (2021). Green synthesis of NiONPs using Trigonella subenervis
extract and its applications as a highly efficient electrochemical
sensor, catalyst, and antibacterial agent. Applied Organometallic
Chemistry , 35 (8), e6264.
28. Aliyu, A., Garba, S., Bognet, O.,
2017. Green synthesis, characterization and antimicrobial activity of
vanadium nanoparticles using leaf extract of Moringa Oleifera.
International Journal of Chemical Sciences 16, 231.
29. de Oliveira Carvalho, H., Góes,
L.D.M., Cunha, N.M.B., Ferreira, A.M., Fernandes, C.P., Favacho, H.A.S.,
Junior, J.O.C.S., Ortiz, B.L.S., Navarrete, A., Carvalho, J.C.T., 2018.
Development and standardization of capsules and tablets containing
Calendula officinalis L. hydroethanolic extract. Revista Latinoamericana
de Química 46, 16-27.
30. Deepika, P., Vinusha, H., Muneera,
B., Rekha, N., Prasad, K.S., 2020. Vanadium oxide nanorods as DNA
cleaving and anti-angiogenic agent: Novel green synthetic approach using
leaf extract of Tinospora cordifolia. Current Research in Green and
Sustainable Chemistry.
31. Talavera, N., Navarro, M.,
Sifontes, A., Díaz, Y., Villalobos, H., Niño-Vega, G., Boada-Sucre, A.,
González, I., 2013. Green synthesis of nanosized vanadium pentoxide
using Saccharomyces cerevisiae as biotemplate. Recent Research
Developments in Materials Science 10, 89.
32. Zhang, Y., Zhang, X., Zhang, L., Alarfaj, A. A., Hirad, A. H., &
Alsabri, A. E. (2021). Green formulation, chemical characterization, and
antioxidant, cytotoxicity, and anti-human cervical cancer effects of
vanadium nanoparticles: A pre-clinical study. Arabian Journal of
Chemistry , 14 (6), 103147.
33. Hilger I., Kaiser W.A. Iron oxide-based nanostructures for MRI and
magnetic hyperthermia. Nanomedicine. 2012;7:1443–1459.
34. Orel V., Shevchenko A., Romanov A., Tselepi M., Mitrelias T., Barnes
C.H., Burlaka A., Lukin S., Shchepotin I. Magnetic properties and
antitumor effect of anocomplexes of iron oxide and doxorubicin.
Nanomedicine. 2015;11:47–55.
35. Van Landeghem F.K., Maier-Hauff K., Jordan A., Hoffmann K.-T.,
Gneveckow U., Scholz R., Thiesen B., Brück W., von Deimling A.
Post-mortem studies in glioblastoma patients treated with thermotherapy
using magnetic nanoparticles. Biomaterials. 2009;30:52–57.
36. Silva A.C., Oliveira T.R., Mamani J.B., Malheiros S.M., Malavolta
L., Pavon L.F., Sibov T.T., Amaro E., Jr., Tann_us A., Vidoto E.L.
Application of hyperthermia induced by superparamagnetic iron oxide
nanoparticles in glioma treatment. Int. J. Nanomed. 2011;6:591–603.
37. Johannsen M., Thiesen B., Wust P., Jordan A. Magnetic nanoparticle
hyperthermia for prostate cancer. Int. J. Hyperthermia.
2010;26:790–795.
38. Bañobre-López M., Teijeiro A., Rivas J. Magnetic nanoparticle-based
hyper-thermia for cancer treatment. Rep. Pract. Oncol. Radiother.
2013;18:397–400.
39. Klein S., Sommer A., Distel L.V., Hazemann J.L., Kröner W., Neuhuber
W., Müller P., Proux O., Kryschi C. Superparamagnetic iron oxide
nanoparticles as novel X-ray enhancer for low-dose radiation therapy. J.
Phys. Chem. B. 2014;118:6159–6166.
40. Chatterjee D.K., Fong L.S., Zhang Y. Nanoparticles in photodynamic
therapy: An emerging paradigm. Adv. Drug Deliv. Rev. 2008;60:1627–1637.
41. Zhang A.P., Sun Y.P. Photocatalytic killing effect of
TiO2 nanoparticles on Ls- 174-t human colon carcinoma
cells. World J. Gastroenterol. 2004;10:3191–3193.