References
1. Garcia CS, Menti C, Lambert AP, Barcellos T, et al. Pharmacological perspectives from Brazilian Salvia officinalis (Lamiaceae): antioxidant, and antitumor in mammalian cells. An Acad Bras Cienc. 2016; 88(1): 281-92.
2. Kozics K, Klusova V, Srancikova A, Mucaji P, et al. Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells. Food Chem. 2013; 141(3): 2198-206.
3. Zare Shahneh F, Valiyari S, Baradaran B, Abdolalizadeh J, et al. Inhibitory and cytotoxic activities of salvia officinalis L. Extract on human lymphoma and leukemia cells by induction of apoptosis. Adv Pharm Bull. 2013; 3(1): 51-5.
4. Zhang Y, Smuts JP, Dodbiba E, Rangarajan R, et al. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. J Agric Food Chem. 2012; 60(36): 9305-14.
5. Zhou R, Long H, Zhang B, Lao Z, et al. Salvianolic acid B, an antioxidant derived from Salvia militarize, protects mice against gammaradiationinduced damage through Nrf2/Bach1. Mol Med Rep. 2019; 19(2): 1309-17.
6.  Jiang Y, Zhang L, Rupasinghe HP. Antiproliferative effects of extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on hepatocellular carcinoma cells. Biomed Pharmacother. 2017; 85: 57-67.
7. Ghorbani A, Esmaeilizadeh M. Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med. 2017; 7(4): 433-40.
8. Poulios E, Giaginis C,Vasios GK. Current Advances on the Extraction and Identification of Bioactive Components of Sage (Salvia spp.). Curr Pharm Biotechnol. 2019; 20(10): 845-57.
9. Naimi M, Vlavcheski F, Shamshoum H, Tsiani E. Rosemary Extract as a Potential Anti-Hyperglycemic Agent: Current Evidence and Future Perspectives. Nutrients. 2017; 9(9): 968.
10. Thevenot P., Cho J., Wavhal D., Timmons R.B., Tang L. Surface chemistry influences cancer killing effect of TiO2nanoparticles. Nanomedicine. 2008;4:226–236.
11. Colon J., Hsieh N., Ferguson A., Kupelian P., Seal S., Jenkins D.W., Baker C.H. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine. 2010;6:698–705.
12. Wason M.S., Colon J., Das S., Seal S., Turkson J., Zhao J., Baker C.H. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine. 2013;9:558–569.
13. Tarnuzzer R.W., Colon J., Patil S., Seal S. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett. 2005;5:2573–2577.
14. Ali D., Alarifi S., Alkahtani S., AlKahtane A.A., Almalik A. Cerium oxide nanoparticles induce oxidative stress and genotoxicity in human skin melanoma cells. Cell Biochem. Biophys. 2014;71:1643–1651.
15. Neri D., Supuran C.T. Interfering with pH regulation in tumors as a therapeutic strategy. Nat. Rev. Drug Discov. 2011;10:767–777.
16. Seo J.W., Chung H., Kim M.Y., Lee J., Choi I.H., Cheon J. Development of watersoluble single-crystalline TiO2nanoparticles for photocatalytic cancer-cell treatment. Small. 2007;3:850–853.
17. Hou Z., Zhang Y., Deng K., Chen Y., Li X., Deng X., Cheng Z., Lian H., Li C., Lin J. UV-emitting upconversion-based TiO2photosensitizing nanoplatform: Near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano. 2015;9:2584–2599.
18. Cui S., Yin D., Chen Y., Di Y., Chen H., Ma Y., Achilefu S., Gu Y.In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano. 2013;7:676–688.
19. Lucky S.S., Idris N.M., Li Z., Huang K., Soo K.C., Zhang Y. Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy. ACS Nano. 2015;9:191–205.
20. Idris N.M., Lucky S.S., Li Z., Huang K., Zhang Y. Photoactivation of core-shell titania coated upconversion nanoparticles and their effect on cell death. J. Mater. Chem. B. 2014;2:7017–7026.
21. Prasad, K.S., Shivamallu, C., Shruthi, G., Prasad, M., 2018. A Novel and One‐pot Green Synthesis of Vanadium Oxide Nanorods Using a Phytomolecule Isolated from Phyllanthus amarus. ChemistrySelect 3, 3860-3865.
22. Zangeneh, M. M., Zangeneh, A., Pirabbasi, E., Moradi, R., Almasi. M. (2019). Appl. Organometal. Chem.33 , e5246
23. Jalalvand, A. R., Zhaleh, M., Goorani, S., Zangeneh, M. M., Seydi, N., Zangeneh, A., Moradi, R. (2019). J. Photochem. Photobiol. B.: Biol.192 , 103–112.
24. Karthik, K., Nikolova, M. P., Phuruangrat, A., Pushpa, S., Revathi, V., & Subbulakshmi, M. (2020). Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Materials Research Innovations24 (4), 229-234.‏
25. Seydi, N., Mahdavi, B., Paydarfard, S., Zangeneh, A., Zangeneh, M.M., Najafi, F., Jalalvand, A.R., Pirabbasi, E., 2019. Preparation, characterization, and assessment of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing properties of titanium nanoparticles using aqueous extract of Ziziphora clinopodioides Lam leaves. Applied Organometallic Chemistry 33, e5009.
26. Baghayeri, M., Mahdavi, B., Hosseinpor‐Mohsen Abadi, Z., Farhadi, S., 2018. Green synthesis of silver nanoparticles using water extract of Salvia leriifolia: Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Applied Organometallic Chemistry 32, e4057.
27. Mahdavi, B., Paydarfard, S., Rezaei‐Seresht, E., Baghayeri, M., & Nodehi, M. (2021). Green synthesis of NiONPs using Trigonella subenervis extract and its applications as a highly efficient electrochemical sensor, catalyst, and antibacterial agent. Applied Organometallic Chemistry35 (8), e6264.‏
28. Aliyu, A., Garba, S., Bognet, O., 2017. Green synthesis, characterization and antimicrobial activity of vanadium nanoparticles using leaf extract of Moringa Oleifera. International Journal of Chemical Sciences 16, 231.
29. de Oliveira Carvalho, H., Góes, L.D.M., Cunha, N.M.B., Ferreira, A.M., Fernandes, C.P., Favacho, H.A.S., Junior, J.O.C.S., Ortiz, B.L.S., Navarrete, A., Carvalho, J.C.T., 2018. Development and standardization of capsules and tablets containing Calendula officinalis L. hydroethanolic extract. Revista Latinoamericana de Química 46, 16-27. 30. Deepika, P., Vinusha, H., Muneera, B., Rekha, N., Prasad, K.S., 2020. Vanadium oxide nanorods as DNA cleaving and anti-angiogenic agent: Novel green synthetic approach using leaf extract of Tinospora cordifolia. Current Research in Green and Sustainable Chemistry.
31. Talavera, N., Navarro, M., Sifontes, A., Díaz, Y., Villalobos, H., Niño-Vega, G., Boada-Sucre, A., González, I., 2013. Green synthesis of nanosized vanadium pentoxide using Saccharomyces cerevisiae as biotemplate. Recent Research Developments in Materials Science 10, 89.
32. Zhang, Y., Zhang, X., Zhang, L., Alarfaj, A. A., Hirad, A. H., & Alsabri, A. E. (2021). Green formulation, chemical characterization, and antioxidant, cytotoxicity, and anti-human cervical cancer effects of vanadium nanoparticles: A pre-clinical study. Arabian Journal of Chemistry14 (6), 103147.‏
33. Hilger I., Kaiser W.A. Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine. 2012;7:1443–1459.
34. Orel V., Shevchenko A., Romanov A., Tselepi M., Mitrelias T., Barnes C.H., Burlaka A., Lukin S., Shchepotin I. Magnetic properties and antitumor effect of anocomplexes of iron oxide and doxorubicin. Nanomedicine. 2015;11:47–55.
35. Van Landeghem F.K., Maier-Hauff K., Jordan A., Hoffmann K.-T., Gneveckow U., Scholz R., Thiesen B., Brück W., von Deimling A. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials. 2009;30:52–57.
36. Silva A.C., Oliveira T.R., Mamani J.B., Malheiros S.M., Malavolta L., Pavon L.F., Sibov T.T., Amaro E., Jr., Tann_us A., Vidoto E.L. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int. J. Nanomed. 2011;6:591–603.
37. Johannsen M., Thiesen B., Wust P., Jordan A. Magnetic nanoparticle hyperthermia for prostate cancer. Int. J. Hyperthermia. 2010;26:790–795.
38. Bañobre-López M., Teijeiro A., Rivas J. Magnetic nanoparticle-based hyper-thermia for cancer treatment. Rep. Pract. Oncol. Radiother. 2013;18:397–400.
39. Klein S., Sommer A., Distel L.V., Hazemann J.L., Kröner W., Neuhuber W., Müller P., Proux O., Kryschi C. Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy. J. Phys. Chem. B. 2014;118:6159–6166.
40. Chatterjee D.K., Fong L.S., Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev. 2008;60:1627–1637.
41. Zhang A.P., Sun Y.P. Photocatalytic killing effect of TiO2 nanoparticles on Ls- 174-t human colon carcinoma cells. World J. Gastroenterol. 2004;10:3191–3193.