References
Allen, J. M., Boyd, B., Nguyen, N., Vachaspati, P., Warnow, T., Huang, D. I., Grady, P. G. S., Bell, K. C., Cronk, Q. C. B., Mugisha, L., Pittendrigh, B. R., Soledad Leonardi, M., Reed, D. L., & Johnson, K. P. (2017). Phylogenomics from Whole Genome Sequences Using aTRAM.Systematic Biology , syw105. https://doi.org/10.1093/sysbio/syw105
Allen, J. M., Huang, D. I., Cronk, Q. C., & Johnson, K. P. (2015). aTRAM - automated target restricted assembly method: A fast method for assembling loci across divergent taxa from next-generation sequencing data. BMC Bioinformatics , 16 (1), 98. https://doi.org/10.1186/s12859-015-0515-2
Allen, J. M., LaFrance, R., Folk, R. A., Johnson, K. P., & Guralnick, R. P. (2018). aTRAM 2.0: An Improved, Flexible Locus Assembler for NGS Data. Evolutionary Bioinformatics , 14 , 117693431877454. https://doi.org/10.1177/1176934318774546
Bao, E., Jiang, T., & Girke, T. (2014). AlignGraph: Algorithm for secondary de novo genome assembly guided by closely related references.Bioinformatics , 30 (12), i319–i328. https://doi.org/10.1093/bioinformatics/btu291
Cameron, D. L., Schröder, J., Penington, J. S., Do, H., Molania, R., Dobrovic, A., Speed, T. P., & Papenfuss, A. T. (2017). GRIDSS: Sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Research , 27 (12), 2050–2060. https://doi.org/10.1101/gr.222109.117
Capella-Gutierrez, S., Silla-Martinez, J. M., & Gabaldon, T. (2009). trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics , 25 (15), 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
Chang, Z., Li, G., Liu, J., Zhang, Y., Ashby, C., Liu, D., Cramer, C. L., & Huang, X. (2015). Bridger: A new framework for de novo transcriptome assembly using RNA-seq data. Genome Biology ,16 (1), 30. https://doi.org/10.1186/s13059-015-0596-2
Chikhi, R., & Rizk, G. (2013). Space-efficient and exact de Bruijn graph representation based on a Bloom filter . 9. https://doi.org/10.1186/1748-7188-8-22
Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., & de Hoon, M. J. L. (2009). Biopython: Freely available Python tools for computational molecular biology and bioinformatics.Bioinformatics , 25 (11), 1422–1423. https://doi.org/10.1093/bioinformatics/btp163
Fér, T., & Schmickl, R. E. (2018). HybPhyloMaker: Target Enrichment Data Analysis From Raw Reads to Species Trees. Evolutionary Bioinformatics , 14 , 1176934317742613. https://doi.org/10.1177/1176934317742613
Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., … & Rokhsar, D. S. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic acids research , 40(D1), D1178-D1186.
Johnson, M. G., Gardner, E. M., Liu, Y., Medina, R., Goffinet, B., Shaw, A. J., Zerega, N. J. C., & Wickett, N. J. (2016). HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Applications in Plant Sciences , 4 (7), 1600016. https://doi.org/10.3732/apps.1600016
Johnson, M. G., Pokorny, L., Dodsworth, S., Botigué, L. R., Cowan, R. S., Devault, A., Eiserhardt, W. L., Epitawalage, N., Forest, F., Kim, J. T., Leebens-Mack, J. H., Leitch, I. J., Maurin, O., Soltis, D. E., Soltis, P. S., Wong, G. K., Baker, W. J., & Wickett, N. J. (2019). A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering.Systematic Biology , 68 (4), 594–606. https://doi.org/10.1093/sysbio/syy086
Li, D., Huang, Y., Leung, C.-M., Luo, R., Ting, H.-F., & Lam, T.-W. (2017). MegaGTA: A sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs. BMC Bioinformatics ,18 (S12), 408. https://doi.org/10.1186/s12859-017-1825-3
Li, M., Wunder, J., Bissoli, G., Scarponi, E., Gazzani, S., Barbaro, E., Saedler, H., & Varotto, C. (2008). Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. Cladistics , 24 (5), 727–745. https://doi.org/10.1111/j.1096-0031.2008.00207.x
Li, Z., De La Torre, A. R., Sterck, L., Cánovas, F. M., Avila, C., Merino, I., Cabezas, J. A., Cervera, M. T., Ingvarsson, P. K., & Van de Peer, Y. (2017). Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants. Genome Biology and Evolution , 9(5), 1130–1147. https://doi.org/10.1093/gbe/evx070
Liu, B., Ma, Z., Ren, C., Hodel, R. G. J., Sun, M., Liu, X., Liu, G., Hong, D., Zimmer, E. A., & Wen, J. (2021). Capturing single‐copy nuclear genes, organellar genomes, and nuclear ribosomal DNA from deep genome skimming data for plant phylogenetics: A case study in Vitaceae.Journal of Systematics and Evolution , 59 (5), 1124–1138. https://doi.org/10.1111/jse.12806
Palmer, J. D., Jorgensen, R. A., & Thompson, W. F. (1985). CHLOROPLAST DNA VARIATION AND EVOLUTION IN PISUM: PATTERNS OF CHANGE AND PHYLOGENETIC ANALYSIS. Genetics , 109 (1), 195–213. https://doi.org/10.1093/genetics/109.1.195
Palmer, J. D., & Thompson, W. F. (1982). Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost.Cell , 29 (2), 537–550. https://doi.org/10.1016/0092-8674 (82)90170-2
Palmer, J. D., & Zamir, D. (1982). Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon . Proceedings of the National Academy of Sciences , 79 (16), 5006–5010. https://doi.org/10.1073/pnas.79.16.5006
Pandey, P., Bender, M. A., Johnson, R., & Patro, R. (2017). deBGR: An efficient and near-exact representation of the weighted de Bruijn graph.Bioinformatics , 33 (14), i133–i141. https://doi.org/10.1093/bioinformatics/btx261
Pevzner, P. A., Tang, H., & Waterman, M. S. (2001). An Eulerian path approach to DNA fragment assembly. Proceedings of the National Academy of Sciences , 98 (17), 9748–9753. https://doi.org/10.1073/pnas.171285098
Henriksen, R. A., Zhao L., Korneliussen T.S. (2023). NGSNGS: next-generation simulator for next-generation sequencing data.Bioinformatics , 39(1), btad041.
Schulz, M. H., Zerbino, D. R., Vingron, M., & Birney, E. (2012). Oases: Robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics , 28 (8), 1086–1092. https://doi.org/10.1093/bioinformatics/bts094
Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J. M., & Birol, İ. (2009). ABySS: A parallel assembler for short read sequence data. Genome Research , 19 (6), 1117–1123. https://doi.org/10.1101/gr.089532.108
Small, R. L., Cronn, R. C., & Wendel, J. F. (2004). Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany , 17 (2), 145. https://doi.org/10.1071/SB03015
Sohn, J., & Nam, J.-W. (2016). The present and future of de novowhole-genome assembly. Briefings in Bioinformatics , bbw096. https://doi.org/10.1093/bib/bbw096
Straub, S. C. K., Parks, M., Weitemier, K., Fishbein, M., Cronn, R. C., & Liston, A. (2012). Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. American Journal of Botany , 99 (2), 349–364. https://doi.org/10.3732/ajb.1100335
Wang, X., Liang, D., Jin, W., Tang, M., Shalayiwu, Liu, S., & Zhang, P. (2020). Out of Tibet: Genomic Perspectives on the Evolutionary History of Extant Pikas. Molecular Biology and Evolution , 37 (6), 1577–1592. https://doi.org/10.1093/molbev/msaa026
Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics , 10 (1), 57–63. https://doi.org/10.1038/nrg2484
Weitemier, K., Straub, S. C. K., Cronn, R. C., Fishbein, M., Schmickl, R., McDonnell, A., & Liston, A. (2014). Hyb-Seq: Combining Target Enrichment and Genome Skimming for Plant Phylogenomics.Applications in Plant Sciences , 2 (9), 1400042. https://doi.org/10.3732/apps.1400042
Wen, J., Xie, D.-F., Price, M., Ren, T., Deng, Y.-Q., Gui, L.-J., Guo, X.-L., & He, X.-J. (2021). Backbone phylogeny and evolution of Apioideae (Apiaceae): New insights from phylogenomic analyses of plastome data. Molecular Phylogenetics and Evolution , 161 , 107183. https://doi.org/10.1016/j.ympev.2021.107183
Wen, J., Yu, Y., Xie, D.-F., Peng, C., Liu, Q., Zhou, S.-D., & He, X.-J. (2020). A transcriptome-based study on the phylogeny and evolution of the taxonomically controversial subfamily Apioideae (Apiaceae).Annals of Botany , 125 (6), 937–953. https://doi.org/10.1093/aob/mcaa011
Wu, F., Mueller, L. A., Crouzillat, D., Pétiard, V., & Tanksley, S. D. (2006). Combining Bioinformatics and Phylogenetics to Identify Large Sets of Single-Copy Orthologous Genes (COSII) for Comparative, Evolutionary and Systematic Studies: A Test Case in the Euasterid Plant Clade. Genetics , 174 (3), 1407–1420. https://doi.org/10.1534/genetics.106.062455
Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research ,18 (5), 821–829. https://doi.org/10.1101/gr.074492.107
Zhang, F., Ding, Y., Zhu, C.-D., Zhou, X., Orr, M. C., Scheu, S., & Luan, Y.-X. (2019). Phylogenomics from low-coverage whole-genome sequencing. Methods in Ecology and Evolution , 10 (4), 507–517. https://doi.org/10.1111/2041-210X.13145
Zhang, Z., Xie, P., Guo, Y., Zhou, W., Liu, E., & Yu, Y. (2022). Easy353: A Tool to Get Angiosperms353 Genes for Phylogenomic Research.Molecular Biology and Evolution , 39 (12), msac261. https://doi.org/10.1093/molbev/msac261
Zhou, W., Soghigian, J., & Xiang, Q.-Y. (Jenny). (2022). A New Pipeline for Removing Paralogs in Target Enrichment Data. Systematic Biology , 71 (2), 410–425. https://doi.org/10.1093/sysbio/syab044