Figure 3. Modeled univariate relationships (means and 95% confidence
intervals) for the four most important moderators of effect size across
all intensity data (top row), and prevalence data (bottom row). Results
from mixed‐effects models are sorted by study traits. Interaction type:
consumptive or non-consumptive. Parasite type: macroparasite or
microparasite. Predator spreader identity: identified as a predator
spreader or not. The dashed line represents no relationship between
condition and infection.
Table 1. Enumeration of effect sizes categorized in nested subsets of
key moderators.
Table 2. Ranking of mixed‐effects models (MEMs) predicting effect size
for the effect of predators on parasites in the prevalence and intensity
data. Models are ranked by ∆AICc with the number of parameters
(k ), test statistic for the omnibus test of model coefficients
(Q M ), estimated variance components (σi ), and Akaike weights (w i ).
Only MEMs with ∆AICc ≤ 2 are shown.
REFERENCES
Borenstein, M.,
Higgins, J.P., Hedges, L.V. & Rothstein, H.R. (2017). Basics of
meta-analysis: I2 is not an absolute measure of heterogeneity.Res. Synth. Methods, 8, 5–18.
Borer, E.T., Briggs,
C.J. & Holt, R.D. (2007). Predators, parasitoids, and pathogens: a
cross-cutting examination of intraguild predation theory.Ecology, 88, 2681–2688.
Brodeur, J. &
Rosenheim, J.A. (2000). Intraguild interactions in aphid parasitoids.Entomol. Exp. Appl., 97, 93–108.
Brown, J.S., Kotler,
B.P., Smith, R.J. & Wirtz, W.O. (1988). The effects of owl predation on
the foraging behavior of heteromyid rodents. Oecologia, 76,
408–415.
Byers, J.E., Malek,
A.J., Quevillon, L.E., Altman, I. & Keogh, C.L. (2015). Opposing
selective pressures decouple pattern and process of parasitic infection
over small spatial scale. Oikos, 124, 1511–1519.
Cáceres, C.E., Knight,
C.J. & Hall, S.R. (2009). Predator–spreaders: predation can enhance
parasite success in a planktonic host–parasite system. Ecology,
90, 2850–2858.
Chesson, P. &
Murdoch, W. (1986). Aggregation of Risk - Relationships Among
Host-Parasitoid Models. Am. Nat., 127, 696–715.
Choisy, M. & Rohani,
P. (2006). Harvesting can increase severity of wildlife disease
epidemics. Proc. R. Soc. B Biol. Sci., 273, 2025–2034.
Creel, S., Schuette,
P. & Christianson, D. (2014). Effects of predation risk on group size,
vigilance, and foraging behavior in an African ungulate community.Behav. Ecol., 25, 773–784.
Dobson, A.P. (1989).
The population biology of parasitic helminths in animal populations. In:Applied mathematical ecology. Springer, pp. 145–175.
Duffy, M.A., Caceres,
C.E. & Hall, S.R. (2019). Healthy herds or predator spreaders? Insights
from the plankton into how predators suppress and spread disease.Wildl. Dis. Ecol. Link. Theory Data Appl., 458.
Duval, S. & Tweedie,
R. (2000). A nonparametric “trim and fill” method of accounting for
publication bias in meta-analysis. J. Am. Stat. Assoc., 95,
89–98.
Ezenwa, V.O. (2004).
Host social behavior and parasitic infection: a multifactorial approach.Behav. Ecol., 15, 446–454.
Ezenwa, V.O. &
Jolles, A.E. (2011). From host immunity to pathogen invasion: the
effects of helminth coinfection on the dynamics of microparasites.
Oxford University Press.
Hassell, M.P. (1982).
Patterns of parasitism by insect parasitoids in patchy environments.Ecol. Entomol., 7, 365–377.
Hatcher, M.J., Dick,
J.T.A. & Dunn, A.M. (2006). How parasites affect interactions between
competitors and predators. Ecol. Lett., 9, 1253–1271.
Hawlena, D., Abramsky,
Z. & Bouskila, A. (2010). Bird predation alters infestation of desert
lizards by parasitic mites. Oikos, 119, 730–736.
Heimpel, G.E.,
Rosenheim, J.A. & Mangel, M. (1997). Predation on adult Aphytis
parasitoids in the field. Oecologia, 110, 346–352.
Hethcote, H.W., Wang,
W., Han, L. & Ma, Z. (2004). A predator–prey model with infected prey.Theor. Popul. Biol., 66, 259–268.
Higgins, J.P. &
Thompson, S.G. (2002). Quantifying heterogeneity in a meta-analysis.Stat. Med., 21, 1539–1558.
Hinchliff, C.E.,
Smith, S.A., Allman, J.F., Burleigh, J.G., Chaudhary, R., Coghill, L.M.,et al. (2015). Synthesis of phylogeny and taxonomy into a
comprehensive tree of life. Proc. Natl. Acad. Sci., 112,
12764–12769.
Holt, R. & Lawton, J.
(1994). The Ecological Consequences of Shared Natural Enemies.Annu. Rev. Ecol. Syst., 25, 495–520.
Holt, R.D. & Polis,
G.A. (1997). A theoretical framework for intraguild predation. Am.
Nat., 149, 745–764.
Holt, R.D. & Roy, M.
(2007). Predation can increase the prevalence of infectious disease.Am. Nat., 169, 690–699.
Hudson, P.J., Dobson,
A.P. & Newborn, D. (1992a). Do parasites make prey vulnerable to
predation? Red grouse and parasites. J. Anim. Ecol., 681–692.
Hudson, P.J., Newborn,
D. & Dobson, A.P. (1992b). Regulation and stability of a free-living
host-parasite system: Trichostrongylus tenuis in red grouse. I.
Monitoring and parasite reduction experiments. J. Anim. Ecol.,
477–486.
Jolles, A.E., Ezenwa,
V.O., Etienne, R.S., Turner, W.C. & Olff, H. (2008). Interactions
between macroparasites and microparasites drive infection patterns in
free-ranging African buffalo. Ecology, 89, 2239–2250.
Jones, E.I. &
Dornhaus, A. (2011). Predation risk makes bees reject rewarding flowers
and reduce foraging activity. Behav. Ecol. Sociobiol., 65,
1505–1511.
King, R.B. (2002).
Predicted and observed maximum prey size - snake size allometry.Funct. Ecol., 16, 766–772.
Krebs, C.J., Boonstra,
R., Kenney, A.J. & Gilbert, B.S. (2018). Hares and small rodent cycles:
a 45-year perspective on predator-prey dynamics in the Yukon boreal
forest. Aust. Zool., 39, 724–732.
Krebs, C.J., Boutin,
S., Boonstra, R., Sinclair, A.R.E., Smith, J.N.M., Dale, M.R.T.,et al. (1995). Impact of Food and Predation on the Snowshoe Hare
Cycle. Science, 269, 1112–1115.
Kuris, A.M. (2003).
Evolutionary ecology of trophically transmitted parasites. J.
Parasitol., 89, S96–S100.
Lafferty, K.D. (1999).
The evolution of trophic transmission. Parasitol. Today, 15,
111–115.
Logiudice, K. (2003).
Trophically transmitted parasites and the conservation of small
populations: raccoon roundworm and the imperiled Allegheny woodrat.Conserv. Biol., 17, 258–266.
Michonneau, F., Brown,
J.W. & Winter, D.J. (2016). rotl: an R package to interact with the
Open Tree of Life data. Methods Ecol. Evol., 7, 1476–1481.
Moore, J. (2002).Parasites and the behavior of animals. Oxford University Press on
Demand.
Naselli, M., Biondi,
A., Tropea Garzia, G., Desneux, N., Russo, A., Siscaro, G., et
al. (2017). Insights into food webs associated with the South American
tomato pinworm. Pest Manag. Sci., 73, 1352–1357.
Nilsson, P.A. &
Brönmark, C. (2000). Prey vulnerability to a gape-size limited predator:
behavioural and morphological impacts on northern pike piscivory.Oikos, 88, 539–546.
Orme, D., Freckleton,
R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., et al.(2018). caper: Comparative Analyses of Phylogenetics and Evolution
in R.
Ostfeld, R.S. & Holt,
R.D. (2004). Are predators good for your health? Evaluating evidence for
top-down regulation of zoonotic disease reservoirs. Front. Ecol.
Environ., 2, 13–20.
Packer, C., Holt,
R.D., Hudson, P.J., Lafferty, K.D. & Dobson, A.P. (2003). Keeping the
herds healthy and alert: implications of predator control for infectious
disease. Ecol. Lett., 6, 797–802.
Pagel, M. (1999).
Inferring the historical patterns of biological evolution.Nature, 401, 877–884.
Paradis, E. &
Schliep, K. (2018). ape 5.0: an environment for modern phylogenetics and
evolutionary analyses in R. Bioinformatics, 35, 526–528.
Patterson, J.E. &
Ruckstuhl, K.E. (2013). Parasite infection and host group size: a
meta-analytical review. Parasitology, 140, 803–813.
Pedersen, A.B. &
Fenton, A. (2007). Emphasizing the ecology in parasite community
ecology. Trends Ecol. Evol., 22, 133–139.
Roy, M. & Holt, R.D.
(2008). Effects of predation on host–pathogen dynamics in SIR models.Theor. Popul. Biol., 73, 319–331.
Shaw, D.J. & Dobson,
A.P. (1995). Patterns of macroparasite abundance and aggregation in
wildlife populations: a quantitative review. Parasitology, 111,
S111–S133.
Spieler, M. (2003).
Risk of predation affects aggregation size: a study with tadpoles of
Phrynomantis microps (Anura: Microhylidae). Anim. Behav., 65,
179–184.
Strauss, A.T.,
Shocket, M.S., Civitello, D.J., Hite, J.L., Penczykowski, R.M., Duffy,
M.A., et al. (2016). Habitat, predators, and hosts regulate
disease in Daphnia through direct and indirect pathways. Ecol.
Monogr., 86, 393–411.
Szuroczki, D. &
Richardson, J.M. (2012). The behavioral response of larval amphibians
(Ranidae) to threats from predators and parasites. PLoS One, 7,
e49592.
Tallian, A., Ordiz,
A., Metz, M.C., Milleret, C., Wikenros, C., Smith, D.W., et al.(2017). Competition between apex predators? Brown bears decrease wolf
kill rate on two continents. Proc. R. Soc. B Biol. Sci., 284,
20162368.
Tompkins, D.M. &
Begon, M. (1999). Parasites can regulate wildlife populations.Parasitol. Today, 15, 311–313.
Viechtbauer, W.
(2010). Conducting meta-analyses in R with the metafor package. J.
Stat. Softw., 36, 1–48.